forked from 2211275/gnn
Compare commits
1 Commits
| Author | SHA1 | Date |
|---|---|---|
|
|
ac8ac1b509 |
|
|
@ -6,43 +6,37 @@ import matplotlib.pyplot as plt
|
|||
def load_data():
|
||||
df_orig_train = pd.read_csv('uebungen/aufgabe3/mnist.csv')
|
||||
df_digits = df_orig_train.drop('label', axis=1)
|
||||
|
||||
return df_digits.to_numpy()
|
||||
|
||||
|
||||
mnist = load_data()
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1.0 / (1.0 + np.exp(-x)) # Sigmoidfunktion
|
||||
|
||||
|
||||
class RBM:
|
||||
|
||||
def __init__(self, visible_size: int, hidden_size: int, learnrate: float = 0.1, epochs: int = 20):
|
||||
def __init__(self, visible_size: int, hidden_size: int, learnrate: float = 0.1):
|
||||
"""__init__ Initialisiere der RBM.
|
||||
|
||||
Args:
|
||||
visible_size (int): anzahl neuronen sichtbare schicht
|
||||
hidden_size (int): anzahl neuronen sichtbare schicht
|
||||
learnrate (float, optional): learnrate eta in [0;1]. Default als 0.1.
|
||||
epochs (int, optional): training epochs. Defaults als 20.
|
||||
"""
|
||||
self.learnrate = learnrate
|
||||
self.visible_size = visible_size
|
||||
self.hidden_size = hidden_size
|
||||
self.epochs = epochs
|
||||
|
||||
# Initialisieren lernbarer Attribute
|
||||
self.weights = np.random.randn(self.visible_size, self.hidden_size)
|
||||
self.visible_bias = np.zeros(self.visible_size) * 0.1
|
||||
self.hidden_bias = np.zeros(self.hidden_size) * 0.1
|
||||
self.weights = np.random.normal(0, 0.01, (self.visible_size, self.hidden_size))
|
||||
self.visible_bias = np.zeros(self.visible_size)
|
||||
self.hidden_bias = np.zeros(self.hidden_size)
|
||||
|
||||
def activate(self, v0):
|
||||
return sigmoid(np.matmul(v0.T, self.weights) + self.hidden_bias)
|
||||
return sigmoid(np.dot(v0, self.weights) + self.hidden_bias)
|
||||
|
||||
def reactivate(self, h0):
|
||||
return sigmoid(np.matmul(self.weights, h0.T) + self.visible_bias)
|
||||
return sigmoid(np.dot(self.weights, h0) + self.visible_bias)
|
||||
|
||||
def contrastive_divergence(self, v0, h0, v1, h1):
|
||||
# Gradient
|
||||
|
|
@ -57,18 +51,17 @@ class RBM:
|
|||
self.hidden_bias += self.learnrate * (h0 - h1)
|
||||
|
||||
def train(self, v0):
|
||||
for _ in range(self.epochs):
|
||||
# versteckte schichten aktivieren
|
||||
h0 = self.activate(v0)
|
||||
# versteckte schichten aktivieren
|
||||
h0 = self.activate(v0)
|
||||
|
||||
# Reaktivieren sichtbarer Schichten
|
||||
v1 = self.reactivate(h0)
|
||||
# Reaktivieren sichtbarer Schichten
|
||||
v1 = self.reactivate(h0)
|
||||
|
||||
# Aktivieren nächster versteckter Schicht
|
||||
h1 = self.activate(v1)
|
||||
# Aktivieren nächster versteckter Schicht
|
||||
h1 = self.activate(v1)
|
||||
|
||||
# Gewichte anpassen
|
||||
self.contrastive_divergence(v0, h0, v1, h1)
|
||||
# Gewichte anpassen
|
||||
self.contrastive_divergence(v0, h0, v1, h1)
|
||||
|
||||
def run(self, v0):
|
||||
# Aktivieren der Schichten
|
||||
|
|
@ -77,13 +70,16 @@ class RBM:
|
|||
|
||||
return h0, v1
|
||||
|
||||
training_epochs = 20
|
||||
rbm = RBM(28 ** 2, 100, 0.02)
|
||||
|
||||
rbm = RBM(28 ** 2, 100, 0.2, epochs=2)
|
||||
|
||||
for i in range(100, 600):
|
||||
# Normalisieren der mnist daten und trainieren
|
||||
number = mnist[i] / 255
|
||||
rbm.train(number)
|
||||
for epoch in range(training_epochs):
|
||||
np.random.shuffle(mnist)
|
||||
for i in range(100, 600): # 500 mnist zahlen zwischen 100 und 600
|
||||
number = mnist[i] / 255
|
||||
rbm.train(number)
|
||||
if (epoch + 1) % 5 == 0:
|
||||
print(f"Epoch {epoch+1}/{training_epochs} completed.")
|
||||
|
||||
# Ergebnisse plotten
|
||||
rows, columns = (9, 9)
|
||||
|
|
|
|||
Loading…
Reference in New Issue