import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression # Erzeugen von Daten np.random.seed(0) X = np.sort(5 * np.random.rand(80, 1), axis=0) y = np.sin(X).ravel() + np.random.randn(80) * 0.1 # Umwandlung der Daten für ein Polynom zweiten Grades polynomial_features = PolynomialFeatures(degree=2) X_poly = polynomial_features.fit_transform(X) # Polynomiale Regression regressor = LinearRegression() regressor.fit(X_poly, y) # Vorhersagen und Plotten y_pred = regressor.predict(X_poly) plt.scatter(X, y, color='blue') plt.plot(X, y_pred, color='red') plt.title("Polynomiale Regression") plt.xlabel("X") plt.ylabel("y") plt.show()