basic implementation

main
Roman Schöne 2025-05-01 19:12:22 +02:00
parent c0ab901104
commit 018fc1723e
2 changed files with 178 additions and 0 deletions

View File

@ -0,0 +1,98 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "4f8f476d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(10, -1, 1)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from rabin import encrypt, decrypt, encode, decode"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "402fb09a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"81"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Verschlüsseln des Buchstaben \"j\" mit (p,q) = (11,19)\n",
"p, q = 11, 19\n",
"clear_text = \"j\"\n",
"\n",
"clear = encode(clear_text)\n",
"cipher = encrypt(clear, p, q)\n",
"\n",
"cipher"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "8264c687",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('j', 'ĩ', 'Ü', '·')"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Entschlüsseln unter Kenntnis des Schlüssels (p, q)\n",
"possible_solutions = decrypt(cipher, p, q)\n",
"\n",
"tuple(map(decode, possible_solutions))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

80
rabin.py 100644
View File

@ -0,0 +1,80 @@
def egcd(a, b) -> tuple[int, int, int]:
"""Erweiterter Euklidischer Algorithmus
:param a: Ganzzahl A
:type a: int
:param b: Ganzzahl B
:type b: int
:return: (ggT(a,b), a_p, b_p) mit a_p * a + b_p * b = ggT(a,b)
:rtype: tuple[int, int, int]
"""
if a == 0:
return (b, 0, 1)
else:
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def encrypt(m : int, p : int, q : int) -> int:
"""Verschlüsselungsfunktion
:param m: Klartextzahl m
:type m: int
:param p: Primzahl p
:type p: int
:param q: Primzahl q
:type q: int
:return: quadratischer Rest von m^2 mod pq als Geheimtext
:rtype: int
"""
n = p * q
return (m**2) % n
def decrypt(c : int, p : int, q : int) -> tuple[int, int, int, int]:
"""Entschlüsselungsfunktion
:param c: Geheimtext
:type c: int
:param p: Primzahl p
:type p: int
:param q: Primzahl q
:type q: int
:return: Mögliche 4 Lösungen
:rtype: tuple[int, int, int, int]
"""
# mögliche Wurzeln modulo p,q bestimmen
m_p = c**((p + 1)//4) % p
m_q = c**((q + 1)//4) % q
n = p * q
#y_p, y_q ermitteln
d, y_p, y_q = egcd(p, q)
# Chinesischer Restsatz
r_1 = (y_p * p * m_q + y_q * q * m_p) % n
r_2 = n - r_1
r_3 = (y_p * p * m_q - y_q * q * m_p) % n
r_4 = n - r_3
# Mögliche Lösungen zurückgeben
return (r_1, r_2, r_3, r_4)
def encode(s : str) -> int:
"""Kodiert einen Buchstaben nach lateinischem Alphabet a->0, b->1, z->25
:param s: Buchstabe
:type s: str
:return: kodierter Buchstabe
:rtype: int
"""
return ord(s.lower()) - 97
def decode(i : int) -> str:
"""Dekodiert einen Buchstaben nach lateinischem Alphabet 0->a, 1->b, 25->z
:param i: Ganzzahl (bestenfalls 0 <= i <= 25)
:type i: int
:return: dekodierter Buchstabe
:rtype: str
"""
return chr(i + 97)