finalized code + cleanup
parent
ef7be8ac54
commit
176ed663c1
|
@ -1,5 +1,3 @@
|
|||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
@ -7,95 +5,109 @@ import matplotlib.pyplot as plt
|
|||
|
||||
def load_data():
|
||||
df_orig_train = pd.read_csv('mnist_test_final.csv')
|
||||
df_digits = df_orig_train.drop('label',axis=1)
|
||||
df_digits = df_orig_train.drop('label', axis=1)
|
||||
|
||||
return df_digits.to_numpy()
|
||||
|
||||
|
||||
mnist = load_data()
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1.0 / (1.0 + np.exp(-x)) # Sigmoidfunktion
|
||||
|
||||
|
||||
class RBM:
|
||||
|
||||
def __init__(self, visible_size: int, hidden_size: int, learnrate: float=0.1) -> None:
|
||||
def __init__(self, visible_size: int, hidden_size: int, learnrate: float = 0.1, epochs=20):
|
||||
"""__init__ Initializes a newly created Ristricted Bolzmann Machine.
|
||||
|
||||
Args:
|
||||
visible_size (int): amount of neurons inside the visible layer
|
||||
hidden_size (int): amount of neurons inside the hidden layer
|
||||
learnrate (float, optional): learnrate eta in [0;1]. Defaults to 0.1.
|
||||
epochs (int, optional): training epochs. Defaults to 20.
|
||||
"""
|
||||
self.learnrate = learnrate
|
||||
self.visible_size = visible_size
|
||||
self.hidden_size = hidden_size
|
||||
self.k = 2
|
||||
self.epochs = 10
|
||||
self.epochs = epochs
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self) -> None:
|
||||
def reset(self):
|
||||
# initialize/reset learnable attributes
|
||||
self.weights = np.random.randn(self.visible_size, self.hidden_size)
|
||||
self.visible_bias = np.zeros(self.visible_size) * 0.1
|
||||
self.hidden_bias = np.zeros(self.hidden_size) * 0.1
|
||||
|
||||
def activate(self, v0):
|
||||
return sigmoid(np.matmul(v0.T, self.weights) + self.hidden_bias)
|
||||
|
||||
|
||||
def reactivate(self, h0):
|
||||
return sigmoid(np.matmul(self.weights, h0.T) + self.visible_bias)
|
||||
|
||||
|
||||
def contrastive_divergence(self, v0, h0, v1, h1):
|
||||
# calculate gradients
|
||||
postive_gradient = np.outer(v0, h0)
|
||||
negative_gradient = np.outer(v1, h0)
|
||||
|
||||
# Adjust weights by delta
|
||||
self.weights += self.learnrate * (postive_gradient - negative_gradient)
|
||||
|
||||
return self.weights
|
||||
|
||||
# Adjust biases by delta
|
||||
self.visible_bias += self.learnrate * (v0 - v1)
|
||||
self.hidden_bias += self.learnrate * (h0 - h1)
|
||||
|
||||
def train(self, v0):
|
||||
for _ in range(self.epochs):
|
||||
h0 = self.activate(v0) # Aktivieren versteckter Schicht
|
||||
v1 = self.reactivate(h0) # Reaktivieren sichtbarer Schicht
|
||||
# activate hidden layer
|
||||
h0 = self.activate(v0)
|
||||
|
||||
# reactivate visible layer
|
||||
v1 = self.reactivate(h0)
|
||||
|
||||
#activate next hidden layer
|
||||
h1 = self.activate(v1)
|
||||
|
||||
# Adjust weights
|
||||
self.contrastive_divergence(v0, h0, v1, h1)
|
||||
|
||||
self.visible_bias += self.learnrate * (v0 - v1)
|
||||
self.hidden_bias += self.learnrate * (h0 - h1)
|
||||
|
||||
|
||||
return h0, v1
|
||||
|
||||
def run(self, v0 : np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""run Runs the Restricted Boltzmann machine on some input vector v0.
|
||||
|
||||
Args:
|
||||
v0 (np.ndarray): 1-dimensional Input vector
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, np.ndarray]: (hidden activation, visible reactivation)
|
||||
"""
|
||||
def run(self, v0):
|
||||
# activate hidden layer
|
||||
h0 = self.activate(v0)
|
||||
v1 = self.reactivate(h0)
|
||||
|
||||
return h0, v1
|
||||
|
||||
rbm = RBM(28**2, 256, 0.1, epochs=3)
|
||||
|
||||
def validate(idx):
|
||||
|
||||
#flatten and normalize mnist data
|
||||
test = mnist[idx].flatten()/255
|
||||
|
||||
# train bolzmann machine and run
|
||||
rbm.train(test)
|
||||
(hid, out) = rbm.run(test)
|
||||
|
||||
return (hid.reshape((5, 5)), out.reshape((28,28)))
|
||||
return (hid.reshape((16, 16)), out.reshape((28, 28)))
|
||||
|
||||
|
||||
rbm = RBM(28**2, 25, 0.1)
|
||||
|
||||
rows, columns = (4,4)
|
||||
# plot results
|
||||
rows, columns = (4, 6)
|
||||
fig = plt.figure(figsize=(10, 7))
|
||||
|
||||
for i in range((rows * columns)):
|
||||
if i % 2 == 0:
|
||||
(hid, out) = validate(i)
|
||||
fig.add_subplot(rows, columns, i+1)
|
||||
|
||||
# hidden layer
|
||||
fig.add_subplot(rows, columns, i+1)
|
||||
plt.imshow(hid, cmap='gray')
|
||||
fig.add_subplot(rows, columns, i+2)
|
||||
plt.axis('off')
|
||||
|
||||
# visible layer
|
||||
fig.add_subplot(rows, columns, i+2)
|
||||
plt.imshow(out, cmap='gray')
|
||||
plt.axis('off')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
|
Loading…
Reference in New Issue