klappt nicht

main
romanamo 2024-05-09 00:23:09 +02:00
parent 49da13274c
commit 823ef138a8
1 changed files with 91 additions and 23 deletions

View File

@ -1,42 +1,110 @@
from typing import Tuple
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
visible = np.ones((10,1))
hidden = np.ones((5,1))
visible_bias = np.ones((len(visible), 1)) * 0.1
hidden_bias = np.ones((len(hidden),1)) * 0.1
def load_data():
df_orig_train = pd.read_csv('mnist_test_final.csv')
df_digits = df_orig_train.drop('label',axis=1)
weights = np.random.rand(len(visible), len(hidden))
phases = 1
return df_digits.to_numpy()
learnrate = 0.2
mnist = load_data()
def sigmoid(x):
return 1 / (1 + np.exp(-x)) # Sigmoidfunktion
return 1.0 / (1.0 + np.exp(-x)) # Sigmoidfunktion
class RBM:
for i in range(1):
activation = sigmoid(np.matmul(visible.T, weights) + hidden_bias)
def __init__(self, visible_size: int, hidden_size: int, learnrate: float=0.1) -> None:
self.learnrate = learnrate
self.visible_size = visible_size
self.hidden_size = hidden_size
self.k = 2
self.epochs = 10
# 2. Computer outer product vh
positive_gradient = np.matmul(visible, hidden.T)
self.reset()
t = sigmoid(np.matmul(weights, hidden) + visible_bias)
reconstructed = sigmoid(np.matmul(weights, hidden) + visible_bias)
def reset(self) -> None:
self.weights = np.random.randn(self.visible_size, self.hidden_size)
self.visible_bias = np.ones(self.visible_size) * 0.1
self.hidden_bias = np.ones(self.hidden_size) * 0.1
# 4. Computer outer product v'h'
negative_gradient = np.matmul(reconstructed.T, activation)
# 5. Update weight matrix using gradients
delta_weights = learnrate * (positive_gradient - negative_gradient)
# 6. Update bias for visible and hidden layer
def activate(self, v0):
return sigmoid(np.matmul(v0.T, self.weights) + self.hidden_bias)
def reactivate(self, h0):
return sigmoid(np.matmul(self.weights, h0.T) + self.visible_bias)
delta_visible_bias = learnrate * (visible - reconstructed)
delta_hidden_bias = learnrate * (hidden - activation)
def contrastive_divergence(self, v0, h0, v1, h1):
postive_gradient = np.outer(v0, h0)
negative_gradient = np.outer(v1, h0)
self.weights += self.learnrate * (postive_gradient - negative_gradient)
return self.weights
def gibbs(self, v0):
for _ in range(self.k):
hidden_probs = self.activate(v0)
h0 = np.random.rand(len(v0), self.hidden_size) < hidden_probs
visible_probs = self.sigmoid(np.dot(h0, self.weights.T) + self.visible_bias)
v0 = np.random.rand(len(v0), self.visible_size) < visible_probs
return v0, hidden_probs
def train(self, v0):
for _ in range(self.epochs):
h0 = self.activate(v0) # Aktivieren versteckter Schicht
v1 = self.reactivate(h0) # Reaktivieren sichtbarer Schicht
h1 = self.activate(v1)
self.contrastive_divergence(v0, h0, v1, h1)
self.visible_bias += self.learnrate * (v0 - v1)
self.hidden_bias += self.learnrate * (h0 - h1)
return h0, v1
def run(self, v0 : np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""run Runs the Restricted Boltzmann machine on some input vector v0.
Args:
v0 (np.ndarray): 1-dimensional Input vector
Returns:
Tuple[np.ndarray, np.ndarray]: (hidden activation, visible reactivation)
"""
h0 = self.activate(v0)
v1 = self.reactivate(h0)
return h0, v1
def validate(idx):
test = mnist[idx].flatten()
#rbm.reset()
rbm.train(test)
(hid, out) = rbm.run(test)
return (hid.reshape((28, 28)), out.reshape((28,28)))
rbm = RBM(28**2, 28**2, 0.1)
rows, columns = (4,4)
fig = plt.figure(figsize=(10, 7))
for i in range((rows * columns)):
if i % 2 == 0:
(hid, out) = validate(i)
fig.add_subplot(rows, columns, i+1)
plt.imshow(hid, cmap='gray')
fig.add_subplot(rows, columns, i+2)
plt.imshow(out, cmap='gray')
plt.axis('off')
plt.show()