klappt nicht
parent
49da13274c
commit
823ef138a8
|
@ -1,42 +1,110 @@
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
visible = np.ones((10,1))
|
|
||||||
hidden = np.ones((5,1))
|
|
||||||
|
|
||||||
visible_bias = np.ones((len(visible), 1)) * 0.1
|
def load_data():
|
||||||
hidden_bias = np.ones((len(hidden),1)) * 0.1
|
df_orig_train = pd.read_csv('mnist_test_final.csv')
|
||||||
|
df_digits = df_orig_train.drop('label',axis=1)
|
||||||
|
|
||||||
weights = np.random.rand(len(visible), len(hidden))
|
return df_digits.to_numpy()
|
||||||
phases = 1
|
|
||||||
|
|
||||||
learnrate = 0.2
|
mnist = load_data()
|
||||||
|
|
||||||
def sigmoid(x):
|
def sigmoid(x):
|
||||||
return 1 / (1 + np.exp(-x)) # Sigmoidfunktion
|
return 1.0 / (1.0 + np.exp(-x)) # Sigmoidfunktion
|
||||||
|
|
||||||
|
class RBM:
|
||||||
|
|
||||||
for i in range(1):
|
def __init__(self, visible_size: int, hidden_size: int, learnrate: float=0.1) -> None:
|
||||||
activation = sigmoid(np.matmul(visible.T, weights) + hidden_bias)
|
self.learnrate = learnrate
|
||||||
|
self.visible_size = visible_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.k = 2
|
||||||
|
self.epochs = 10
|
||||||
|
|
||||||
# 2. Computer outer product vh
|
self.reset()
|
||||||
positive_gradient = np.matmul(visible, hidden.T)
|
|
||||||
|
|
||||||
t = sigmoid(np.matmul(weights, hidden) + visible_bias)
|
def reset(self) -> None:
|
||||||
reconstructed = sigmoid(np.matmul(weights, hidden) + visible_bias)
|
self.weights = np.random.randn(self.visible_size, self.hidden_size)
|
||||||
|
self.visible_bias = np.ones(self.visible_size) * 0.1
|
||||||
|
self.hidden_bias = np.ones(self.hidden_size) * 0.1
|
||||||
|
|
||||||
# 4. Computer outer product v'h'
|
def activate(self, v0):
|
||||||
negative_gradient = np.matmul(reconstructed.T, activation)
|
return sigmoid(np.matmul(v0.T, self.weights) + self.hidden_bias)
|
||||||
# 5. Update weight matrix using gradients
|
|
||||||
|
def reactivate(self, h0):
|
||||||
delta_weights = learnrate * (positive_gradient - negative_gradient)
|
return sigmoid(np.matmul(self.weights, h0.T) + self.visible_bias)
|
||||||
|
|
||||||
# 6. Update bias for visible and hidden layer
|
|
||||||
|
|
||||||
delta_visible_bias = learnrate * (visible - reconstructed)
|
def contrastive_divergence(self, v0, h0, v1, h1):
|
||||||
delta_hidden_bias = learnrate * (hidden - activation)
|
postive_gradient = np.outer(v0, h0)
|
||||||
|
negative_gradient = np.outer(v1, h0)
|
||||||
|
|
||||||
|
self.weights += self.learnrate * (postive_gradient - negative_gradient)
|
||||||
|
|
||||||
|
return self.weights
|
||||||
|
|
||||||
|
def gibbs(self, v0):
|
||||||
|
for _ in range(self.k):
|
||||||
|
hidden_probs = self.activate(v0)
|
||||||
|
h0 = np.random.rand(len(v0), self.hidden_size) < hidden_probs
|
||||||
|
visible_probs = self.sigmoid(np.dot(h0, self.weights.T) + self.visible_bias)
|
||||||
|
v0 = np.random.rand(len(v0), self.visible_size) < visible_probs
|
||||||
|
return v0, hidden_probs
|
||||||
|
|
||||||
|
def train(self, v0):
|
||||||
|
for _ in range(self.epochs):
|
||||||
|
h0 = self.activate(v0) # Aktivieren versteckter Schicht
|
||||||
|
v1 = self.reactivate(h0) # Reaktivieren sichtbarer Schicht
|
||||||
|
h1 = self.activate(v1)
|
||||||
|
|
||||||
|
self.contrastive_divergence(v0, h0, v1, h1)
|
||||||
|
|
||||||
|
self.visible_bias += self.learnrate * (v0 - v1)
|
||||||
|
self.hidden_bias += self.learnrate * (h0 - h1)
|
||||||
|
|
||||||
|
|
||||||
|
return h0, v1
|
||||||
|
|
||||||
|
def run(self, v0 : np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""run Runs the Restricted Boltzmann machine on some input vector v0.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
v0 (np.ndarray): 1-dimensional Input vector
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[np.ndarray, np.ndarray]: (hidden activation, visible reactivation)
|
||||||
|
"""
|
||||||
|
h0 = self.activate(v0)
|
||||||
|
v1 = self.reactivate(h0)
|
||||||
|
|
||||||
|
return h0, v1
|
||||||
|
|
||||||
|
|
||||||
|
def validate(idx):
|
||||||
|
|
||||||
|
test = mnist[idx].flatten()
|
||||||
|
#rbm.reset()
|
||||||
|
rbm.train(test)
|
||||||
|
(hid, out) = rbm.run(test)
|
||||||
|
|
||||||
|
return (hid.reshape((28, 28)), out.reshape((28,28)))
|
||||||
|
|
||||||
|
|
||||||
|
rbm = RBM(28**2, 28**2, 0.1)
|
||||||
|
|
||||||
|
rows, columns = (4,4)
|
||||||
|
fig = plt.figure(figsize=(10, 7))
|
||||||
|
for i in range((rows * columns)):
|
||||||
|
if i % 2 == 0:
|
||||||
|
(hid, out) = validate(i)
|
||||||
|
fig.add_subplot(rows, columns, i+1)
|
||||||
|
plt.imshow(hid, cmap='gray')
|
||||||
|
fig.add_subplot(rows, columns, i+2)
|
||||||
|
plt.imshow(out, cmap='gray')
|
||||||
|
plt.axis('off')
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue