finalized iRprop-
parent
a11a8b95b5
commit
919eed574a
|
@ -1,14 +1,21 @@
|
|||
import numpy as np
|
||||
|
||||
# Sigmoide Aktivierungsfunktion und ihre Ableitung
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x)) # Sigmoidfunktion
|
||||
return 1 / (1 + np.exp(-x)) # Sigmoidfunktion
|
||||
|
||||
|
||||
def deriv_sigmoid(x):
|
||||
return x * (1 - x) # Ableitung der Sigmoiden
|
||||
return x * (1 - x) # Ableitung der Sigmoiden
|
||||
|
||||
|
||||
# Das XOR-Problem, input [bias, x, y] und Target-Daten
|
||||
inp = np.array([[1,0,0], [1,0,1], [1,1,0], [1,1,1]])
|
||||
inp = np.array([[1, 0, 0],
|
||||
[1, 0, 1],
|
||||
[1, 1, 0],
|
||||
[1, 1, 1]])
|
||||
target = np.array([[0], [1], [1], [0]])
|
||||
|
||||
# Die Architektur des neuronalen Netzes
|
||||
|
@ -16,10 +23,17 @@ inp_size = 3 # Eingabeneuronen
|
|||
hid_size = 4 # Hidden-Neuronen
|
||||
out_size = 1 # Ausgabeneuron
|
||||
|
||||
delta_L1 = np.ones((inp_size, hid_size)) * 0.125
|
||||
delta_L2 = np.ones((hid_size, out_size)) * 0.125
|
||||
|
||||
delta_min = 0
|
||||
delta_max = 50
|
||||
|
||||
# Gewichte zufällig initialisieren (Mittelwert = 0)
|
||||
w0 = np.random.random((inp_size, hid_size)) - 0.5
|
||||
w1 = np.random.random((hid_size, out_size)) - 0.5
|
||||
|
||||
|
||||
def multiply_learnrate(old, new):
|
||||
if old * new > 0:
|
||||
return 1.2
|
||||
|
@ -27,36 +41,43 @@ def multiply_learnrate(old, new):
|
|||
return 0.5
|
||||
return 1
|
||||
|
||||
|
||||
v_multiply_learnrate = np.vectorize(multiply_learnrate)
|
||||
|
||||
L2_grad_old = np.zeros((4,1))
|
||||
L1_grad_old = np.zeros((3,4))
|
||||
L2_grad_old = np.zeros((4, 1))
|
||||
L1_grad_old = np.zeros((3, 4))
|
||||
|
||||
# Netzwerk trainieren
|
||||
for i in range(600):
|
||||
for i in range(100):
|
||||
|
||||
# Vorwärtsaktivierung
|
||||
L0 = inp
|
||||
L1 = sigmoid(np.matmul(L0, w0))
|
||||
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||
L2 = sigmoid(np.matmul(L1, w1))
|
||||
|
||||
# Fehler berechnen
|
||||
L2_error = L2 - target
|
||||
|
||||
# Backpropagation
|
||||
L2_delta = L2_error * deriv_sigmoid(L2) # Gradient eL2
|
||||
L2_delta = L2_error * deriv_sigmoid(L2) # Gradient eL2
|
||||
L1_error = np.matmul(L2_delta, w1.T)
|
||||
L1_delta = L1_error * deriv_sigmoid(L1)
|
||||
|
||||
|
||||
# Gradienten
|
||||
L2_grad_new = np.matmul(L1.T, L2_delta)
|
||||
L1_grad_new = np.matmul(L0.T, L1_delta)
|
||||
|
||||
# Gewichte aktualisieren
|
||||
# Gewichte aktualisieren
|
||||
learnrate = 0.1
|
||||
w1 -= learnrate * v_multiply_learnrate(L2_grad_old, L2_grad_new) * np.sign(L2_grad_new)
|
||||
w0 -= learnrate * v_multiply_learnrate(L1_grad_old, L1_grad_new) * np.sign(L1_grad_new)
|
||||
|
||||
delta_L1 = np.clip(
|
||||
delta_L1 * v_multiply_learnrate(L1_grad_old, L1_grad_new), 0, 50)
|
||||
delta_L2 = np.clip(
|
||||
delta_L2 * v_multiply_learnrate(L2_grad_old, L2_grad_new), 0, 50)
|
||||
|
||||
w1 -= learnrate * np.sign(L2_grad_new) * delta_L2
|
||||
w0 -= learnrate * np.sign(L1_grad_new) * delta_L1
|
||||
|
||||
# Gradienten aktualisieren
|
||||
|
||||
|
@ -67,7 +88,7 @@ for i in range(600):
|
|||
# Netzwerk testen
|
||||
L0 = inp
|
||||
L1 = sigmoid(np.matmul(inp, w0))
|
||||
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||
L2 = sigmoid(np.matmul(L1, w1))
|
||||
|
||||
print(L2)
|
||||
print(L2)
|
||||
|
|
Loading…
Reference in New Issue