from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # Daten laden iris = load_iris() X, y = iris.data, iris.target # Daten in Trainings- und Testsets aufteilen X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Daten standardisieren scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # KNN-Modell trainieren knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # Vorhersagen treffen y_pred = knn.predict(X_test) # Genauigkeit berechnen accuracy = accuracy_score(y_test, y_pred) print(f"Genauigkeit: {accuracy:.2f}")