import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs # Erzeuge 300 Datenpunkten und 4 Clustern data, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) # Wende K-Means Clustering an kmeans = KMeans(n_clusters=4) kmeans.fit(data) predicted_labels = kmeans.predict(data) # Zeige die Cluster und Zentroide plt.scatter(data[:, 0], data[:, 1], c=predicted_labels, s=50, cmap='viridis') centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X') plt.title("k-Means") plt.show()