gnn/beispiele/3.5_Scikit-Learn.py

28 lines
809 B
Python

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# Daten laden
iris = load_iris()
X, y = iris.data, iris.target
# Daten in Trainings- und Testsets aufteilen
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Daten standardisieren
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# KNN-Modell trainieren
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
# Vorhersagen treffen
y_pred = knn.predict(X_test)
# Genauigkeit berechnen
accuracy = accuracy_score(y_test, y_pred)
print(f"Genauigkeit: {accuracy:.2f}")