thesis
Graz
Karl-Franzens-Universität Graz
Walter
Victoria
Fraktalgeometrie
Fraktale: Die geometrischen Elemente der Natur
Die fraktale Geometrie gilt als relativ junge Disziplin der Mathematik. Deshalb ist es umso interessanter,diesen neuen Zugang zur Geometrie zu beleuchten. Die vorliegende Diplomarbeit soll,anhand von Beispielen verschiedener Errungenschaften und Entdeckungen der letzten Jahrzehnte,eine generelle Einführung in die Welt der Fraktale liefern. Viele davon beziehen sich auf Arbeitenvon Benoit B. Mandelbrot, der in den 1970er die fundamentalen Grundzüge der fraktalen Geometriegestaltete.Im zentralen Fokus dieser Arbeit stehen einige klassische Fraktale wie zum Beispiel die Cantor-Menge, das Sierpinski-Dreieck, diverse fraktale Kurven sowie die Mandelbrot-Menge und die Julia-Mengen. Diese fraktalen Objekte weisen eine Reihe von ungewöhnlichen und zugleich faszinierendenEigenschaften auf, die bis dato noch nicht vollständig geklärt werden konnten. Eine wesentlicheRolle spielt hier der Begriff der Selbstähnlichkeit, mit denen sich die Strukturen der Fraktale beschreibenlassen. Außerdem treten in vielen Bereichen der Natur und diversen Wissenschaftenbestimmte Zusammenhänge mit der fraktalen Geometrie auf, von denen einige am Ende dieser Arbeitnäher betrachtet werden. Fraktale Muster lassen sich im menschlichen Körper, in der Geologie,in der Chaostheorie und in vielen weiteren Wissenschaftszweigen finden. Ein großer Nutzen liegtdarin, dass mittels neuer Methoden aus der fraktalen Geometrie die Komplexität der Natur sehrgut modelliert werden kann und somit das Verständnis über deren Eigenschaften und Funktionenwächst.
2018
de
Universitätsbibliothek Graz Hauptbibliothek, Signatur: II 807295
https://resolver.obvsg.at/urn:nbn:at:at-ubg:1-129578
77
Diplomarbeit
conferencePaper
ISBN 978-1-4503-6540-6
Proceedings of the 2018 International Conference on Computing and Big Data
DOI 10.1145/3277104.3277119
Charleston SC USA
ACM
Cabutto
Tyler A.
Heeney
Sean P.
Ault
Shaun V.
Mao
Guifen
Wang
Jin
An Overview of the Julia Programming Language
2018-09-08
en
DOI.org (Crossref)
https://dl.acm.org/doi/10.1145/3277104.3277119
2024-06-09 17:59:28
87-91
ICCBD '18: 2018 International Conference on Computing and Big Data
magazineArticle
8
Silesian Journal of Pure and Applied Mathematics
Januszek
Tomasz
Pleszczyński
Mariusz
Comparative analysis of the efficiency of Julia language against the other classic programming languages
2018
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c4339453-4519-4b92-a673-307638a50cb1/c/januszek_Silesian_J_Pure_Appl_Math_2018_8_1.pdf
journalArticle
Bezanson
Jeff
Karpinski
Stefan
Shah
Viral
Edelman
Alan
Julia Language Documentation
en
Zotero
attachment
Bezanson et al. - Julia Language Documentation.pdf
https://readthedocs.org/projects/julia-wf/downloads/pdf/stable/
2024-06-09 18:18:07
3
application/pdf
book
John Wiley & Sons
Kenneth
Falconer
Fractal geometry: mathematical foundations and applications
2007
journalArticle
Drakopoulos
V.
Mimikou
N.
Theoharis
T.
Fractals
Mandelbrot and Julia sets
Parallel implementation comparison
Parallelism
An overview of parallel visualisation methods for Mandelbrot and Julia sets
We present a comparative study of simple parallelisation schemes for the most widely used methods for the graphical representation of Mandelbrot and Julia sets. The compared methods render the actual attractor or its complement.
2003
https://www.sciencedirect.com/science/article/pii/S0097849303001067
Number: 4
635-646
27
Computers & Graphics
DOI https://doi.org/10.1016/S0097-8493(03)00106-7
4
ISSN 0097-8493
book
MIT press
Flake
Gary William
The computational beauty of nature: Computer explorations of fractals, chaos, complex systems, and adaptation
2000
journalArticle
15
IEEE Computer Graphics and Applications
DOI 10.1109/38.364961
1
Monro
D.M.
Dudbridge
F.
Fractals
Approximation algorithms
Data structures
Displays
Graphics
Particle measurements
Rendering (computer graphics)
Software algorithms
Software performance
Spirals
Rendering algorithms for deterministic fractals
1995
Number: 1
32-41
attachment
scholar.bib
text/x-bibtex
journalArticle
Atella
Anthony
Rendering Hypercomplex Fractals
en
Zotero
https://digitalcommons.ric.edu/cgi/viewcontent.cgi?article=1138&context=honors_projects
attachment
Atella - Rendering Hypercomplex Fractals.pdf
https://digitalcommons.ric.edu/cgi/viewcontent.cgi?article=1138&context=honors_projects
2024-06-09 20:31:49
3
application/pdf
journalArticle
Danisch
Simon
Krumbiegel
Julius
Makie.jl: Flexible high-performance data visualization for Julia
Makie.jl is a cross-platform plotting ecosystem for the Julia programming language (Bezanson et al., 2012), which enables researchers to create high-performance, GPU-powered, interactive visualizations, as well as publication-quality vector graphics with one unified interface. The infrastructure based on Observables.jl allows users to express how a visualization depends on multiple parameters and data sources, which can then be updated live, either programmatically, or through sliders, buttons and other GUI elements. A sophisticated layout system makes it easy to assemble complex figures. It is designed to avoid common difficulties when aligning nested subplots of different sizes, or placing colorbars or legends freely without spacing issues. Makie.jl leverages the Julia type system to automatically convert many kinds of input arguments which results in a very flexible API that reduces the need to manually prepare data. Finally, users can extend every step of this pipeline for their custom types through Julia’s powerful multiple dispatch mechanism, making Makie a highly productive and generic visualization system.
2021-09-01
en
Makie.jl
DOI.org (Crossref)
https://joss.theoj.org/papers/10.21105/joss.03349
2024-06-09 20:36:58
http://creativecommons.org/licenses/by/4.0/
Number: 65
3349
6
Journal of Open Source Software
DOI 10.21105/joss.03349
65
JOSS
ISSN 2475-9066
attachment
Danisch und Krumbiegel - 2021 - Makie.jl Flexible high-performance data visualiza.pdf
https://joss.theoj.org/papers/10.21105/joss.03349.pdf
2024-06-09 20:36:56
3
application/pdf
journalArticle
Saupe
Dietmar
Efficient computation of Julia sets and their fractal dimension
The computation of the fractal dimension is straightforward using the box-counting method. However, this approach may require very long computation times. If the Julia set is the connected common boundary of two or more basins of attraction, then a recursive version of the box-counting method can be made storage- and time-efficient. The method is also suitable for the computation of the Julia sets. We apply the method to verify a result of D. Ruelle regarding the dimension of Julia sets of R(z)= z2+c for small c∈C, to Newton's method for complex polynomials of degree 3 and to a sequence of Julia sets from the renormalization transformation for hierarchical lattices. We also discuss the computation of Julia sets and their information dimension by the inverse iteration method. In all examples tested we find that the information dimension is less than the fractal dimension.
1987
https://www.sciencedirect.com/science/article/pii/0167278987900248
Number: 3
358-370
28
Physica D: Nonlinear Phenomena
DOI https://doi.org/10.1016/0167-2789(87)90024-8
3
ISSN 0167-2789
journalArticle
Gaddis
Michael E
Zyda
Michael J
The Fractal Geometry of Nature; Its Mathematical Basis and Application to Computer Graphics
Fractal Geometry is a recent synthesis of old mathematical constructs. It was first popularized by complex renderings of terrain on a computer graphics medium. Fractal geometry has since spawned research in many diverse scientific disciplines. Its rapid acceptance has been achieved due to its ability to model phenomena that defy discrete computation due to roughneas and discontinuities. With its quick acceptance has come problems. Fractal geometry is a misunderstood idea that is quickly becoming buried under grandiose terminology that serves no purpose. Its essence is induction using simple geometric constructs to transform initiating objects. The fractal objects that we create with this process often resemble natural phenomenon. The purpose of this work is to present fractal geometry to the graphics programmer as a simple workable technique. We hope to demystify the concepts of fractal geometry and make it available to all who are interested.
en
Zotero
attachment
Gaddis und Zyda - The Fractal Geometry of Nature; Its Mathematical B.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA165185.pdf
2024-06-09 20:54:11
3
application/pdf
book
CRC Press
Addison
Paul S
Fractals and chaos: an illustrated course
1997
bookSection
ISBN 0-470-86412-5
Encyclopedia of Computer Science
GBR
John Wiley and Sons Ltd.
Saupe
Dietmar
Fractals
Much scientific research of the past has analyzed human-made machines and the physical laws that govern their operation. The success of science relies on the predictability of the underlying experiments. Euclidean geometry-based on lines, circles, etc.–is the tool to describe spatial relations, where differential equations are essential in the study of motion and growth. However, natural shapes such as mountains, clouds or trees do not fit well into this framework. The understanding of these phenomena has undergone a fundamental change in the last two decades. Fractal geometry, as conceived by Mandelbrot, provides a mathematical model for many of the seemingly complex forms found in nature. One of Mandelbrot's key observations has been that these forms possess a remarkable statistical invariance under magnification. This may be quantified by a fractal dimension, a number that agrees with our intuitive understanding of dimension but need not be an integer. These ideas may also be applied to time-variant processes.
2003
725–732
journalArticle
Krantz
Steven G
Fractal geometry
en
Zotero
attachment
Krantz - Fractal geometry.pdf
https://www.mimuw.edu.pl/~pawelst/rzut_oka/Zajecia_dla_MISH_2011-12/Lektury_files/Math.%20Intelligencer%201989%20Krantz.pdf
2024-06-09 21:15:37
3
application/pdf
journalArticle
Smith
Geri
Fractal Geometry: History and Theory
26.04.2011
https://www.marywood.edu/programs/resources/math-research-geri-smith-fractal.pdf
preprint
arXiv
Christ
Simon
Schwabeneder
Daniel
Rackauckas
Christopher
Borregaard
Michael Krabbe
Breloff
Thomas
Computer Science - Graphics
I.3.3
Plots.jl -- a user extendable plotting API for the julia programming language
There are plenty of excellent plotting libraries. Each excels at a different use case: one is good for printed 2D publication figures, the other at interactive 3D graphics, a third has excellent LATEX integration or is good for creating dashboards on the web.
2022-06-17
en
arXiv.org
http://arxiv.org/abs/2204.08775
2024-06-10 16:24:55
arXiv:2204.08775 [cs]
arXiv:2204.08775
Comment: 22 pages, 6 figures, 6 code listings
attachment
Christ et al. - 2022 - Plots.jl -- a user extendable plotting API for the.pdf
https://arxiv.org/pdf/2204.08775
2024-06-10 16:24:52
1
application/pdf
computerProgram
CRAN contributed packages
https://cran.r-project.org/web/packages/
2024-06-12
computerProgram
PyPi (Python Package Index)
https://pypi.org/
2024-04-17
computerProgram
MATLAB Fileexchange
https://de.mathworks.com/matlabcentral/fileexchange/
2024-06-12
computerProgram
Carbonelle
Pierre
PYPL (Popularity of Programming Language) Index
2023
2024-06-12
conferencePaper
ISBN 978-1-4503-4781-5
Proccedings of the 10th European Conference on Software Architecture Workshops
DOI 10.1145/2993412.3003382
Copenhagen Denmark
ACM
Decan
Alexandre
Mens
Tom
Claes
Maelick
On the topology of package dependency networks: a comparison of three programming language ecosystems
2016-11-28
en
On the topology of package dependency networks
DOI.org (Crossref)
https://dl.acm.org/doi/10.1145/2993412.3003382
2024-06-13 08:27:45
1-4
ECSAW '16: European Conference on Software Architecture Workshops
book
Prusinkiewicz
Przemyslaw
Lindenmayer
Aristid
The algorithmic beauty of plants
attachment
abop.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf
2024-06-13 12:37:15
1
application/pdf
journalArticle
Perkel
Jeffrey M.
Julia: come for the syntax, stay for the speed
8/2019
en
Julia
DOI.org (Crossref)
https://www.nature.com/articles/d41586-019-02310-3
2024-06-14 14:57:17
http://www.springer.com/tdm
141-142
572
Nature
DOI 10.1038/d41586-019-02310-3
7767
Nature
ISSN 0028-0836, 1476-4687
attachment
Perkel - 2019 - Julia come for the syntax, stay for the speed.pdf
https://media.nature.com/original/magazine-assets/d41586-019-02310-3/d41586-019-02310-3.pdf
2024-06-14 14:57:14
1
application/pdf
thesis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Bezanson
Jeffrey Werner
Abstraction in Technical Computing
2015
https://dspace.mit.edu/handle/1721.1/99811
literatur