stared at the screen for 2h

master
Ruben-FreddyLoafers 2025-12-08 11:30:42 +01:00
parent a73d88737e
commit 0798236e26
3 changed files with 56 additions and 27 deletions

View File

@ -208,7 +208,7 @@ def main():
# Cap the frame rate
# tick_speed = 100
tick_speed = 5 if outer_iter % 20 == 0 else 100
tick_speed = 5 if outer_iter % 20 == 0 else 50
clock.tick(tick_speed)
pygame.quit()

View File

@ -125,7 +125,7 @@ def take_action(s, a, labyrinth):
# Check if action caused gameover (Pacman caught by ghost)
if s_new[0] == s_new[2] and s_new[1] == s_new[3]:
r = -100.0
print("Invalid action type shit")
# print("Invalid action")
else:
r = calc_reward(tuple(s_new), labyrinth)

View File

@ -1,11 +1,21 @@
import numpy as np
from keras.datasets import mnist
import matplotlib.pyplot as plt
# Load MNIST
print("Loading MNIST...") # debugging
(X_train_raw, y_train), (X_test_raw, y_test) = mnist.load_data()
# Flatten images from (samples, 28, 28) to (samples, 784)
# print("X_train_raw[0]:")
# print(X_train_raw[0]) # output: 28x28 vector spelling 5
# print("y_train[0]:")
# print(y_train[0]) # output: 5
# print("X_test_raw[0]:")
# print(X_test_raw[0]) # output: 28x28 vector spelling 7
# print("y_test[0]:")
# print(y_test[0]) # output: 7
# Flatten images from (samples, 28, 28) to (samples, 784) -> one dimensional
X_train = X_train_raw.reshape(X_train_raw.shape[0], -1).astype(np.float32)
X_test = X_test_raw.reshape(X_test_raw.shape[0], -1).astype(np.float32)
@ -17,46 +27,65 @@ prototype_labels = y_train[:1000]
print("Using", len(prototypes), "prototype vectors.") # debugging
# Fully vectorized kNN function
# kNN function with explicit loops for readability
def knn_predict_batch(X_batch, k=3):
"""
Predicts labels for a batch of test vectors using fully vectorized kNN.
Predicts labels for a batch of test vectors using kNN.
X_batch: shape (batch_size, 784)
returns: shape (batch_size,)
"""
preds = []
# distance[i, j] = || X_batch[i] - prototypes[j] ||
# Efficient: (a - b)^2 = a^2 + b^2 - 2ab
a2 = np.sum(X_batch**2, axis=1, keepdims=True) # shape (N, 1)
b2 = np.sum(prototypes**2, axis=1) # shape (1000,)
ab = X_batch @ prototypes.T # shape (N, 1000)
# For each test image
for test_img in X_batch:
distances = []
distances = np.sqrt(a2 - 2*ab + b2) # shape (N, 1000)
# Euclidean distance to each prototype
for prototype in prototypes:
# distance = sqrt(sum((test_img - prototype)^2))
diff = test_img - prototype
distance = np.sqrt(np.sum(diff ** 2))
distances.append(distance)
# Get k nearest neighbors for each test vector
knn_idx = np.argpartition(distances, k, axis=1)[:, :k]
# Find indices of k nearest neighbors (smallest distances)
distances = np.array(distances)
nearest_k_indices = np.argsort(distances)[:k] # returns indices of array with sorted distances
# Get labels of those neighbors
knn_labels = prototype_labels[knn_idx]
# Get labels of the k nearest neighbors
nearest_k_labels = prototype_labels[nearest_k_indices]
# Majority vote (vectorized)
preds = np.array([np.bincount(row, minlength=10).argmax()
for row in knn_labels])
# Majority vote
prediction = np.bincount(nearest_k_labels, minlength=10).argmax()
preds.append(prediction)
return preds
return np.array(preds)
# 4. Evaluate on first N_TEST test samples
# Evaluate on first N_TEST test samples
N_TEST = 1000
print(f"Evaluating on {N_TEST} test samples...") # debugging
X_eval = X_test[:N_TEST]
y_eval = y_test[:N_TEST]
preds = knn_predict_batch(X_eval, k=3)
preds = knn_predict_batch(X_eval, k=5)
accuracy = np.mean(preds == y_eval)
print("Predictions:", preds[:20])
print("True labels:", y_eval[:20])
print("Accuracy:", accuracy)
# Visualize first 20 predictions
fig, axes = plt.subplots(4, 5, figsize=(12, 10))
axes = axes.flatten()
for i in range(0, 20):
# Reshape flattened image back to 28x28
img = X_eval[i].reshape(28, 28)
axes[i].imshow(img, cmap='gray')
axes[i].set_title(f"Pred: {preds[i]}, True: {y_eval[i]}")
axes[i].axis('off')
plt.tight_layout()
plt.show()