removed impossible states; better distance consideration; bug fixing

master
Ruben-FreddyLoafers 2025-11-18 14:42:43 +01:00
parent a7b43c9037
commit 24714fca0e
2 changed files with 121 additions and 30 deletions

View File

@ -2,6 +2,7 @@ import pygame
import random import random
import math import math
import reinforcement_learning as rl import reinforcement_learning as rl
import time
# Initialize pygame # Initialize pygame
pygame.init() pygame.init()
@ -124,6 +125,9 @@ def main():
# Initialize Pacman and Ghost positions # Initialize Pacman and Ghost positions
pacman = Pacman(1, 1) pacman = Pacman(1, 1)
ghost = Ghost(COLS - 2, ROWS - 2) ghost = Ghost(COLS - 2, ROWS - 2)
q = rl.q_init()
gamma = 0.9
alpha = 0.8
# Game loop # Game loop
running = True running = True
@ -166,23 +170,23 @@ def main():
running = False running = False
# Start of my code # Start of my code
alpha = 0.8
gamma = 0.9
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
s_not_terminal = True
q = rl.q_init() #s_not_terminal = True
# while s_not_terminal:
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
s_new, r = rl.take_action(s, a, labyrinth)
move_pacman(pacman, a)
print("state: " + str(s_new) + " r: " + str(r))
while s_not_terminal: q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down print(q[s])
s_new, r = rl.take_action(s, a, labyrinth)
move_pacman(pacman, a) s = s_new
time.sleep(0.5)
q[s][a] += alpha * (r + gamma * max(q[s_new]) - q[s][a])
print(q[s][a]) #gamma *= gamma
s = s_new
# Draw the labyrinth, pacman, and ghost # Draw the labyrinth, pacman, and ghost
draw_labyrinth() draw_labyrinth()

View File

@ -14,6 +14,15 @@ def q_init():
NUM_ACTIONS = 4 NUM_ACTIONS = 4
INITIAL_Q_VALUE = 1.0 # Small value for initialization INITIAL_Q_VALUE = 1.0 # Small value for initialization
# Labyrinth layout
labyrinth = [
"##########",
"#........#",
"#.##..##.#",
"#........#",
"##########"
]
s0_range = range(1, 9) s0_range = range(1, 9)
s1_range = range(1, 4) s1_range = range(1, 4)
s2_range = range(1, 9) s2_range = range(1, 9)
@ -33,43 +42,121 @@ def q_init():
if s1 == 2 and s0 not in s_constrained_values: if s1 == 2 and s0 not in s_constrained_values:
continue continue
if s3 == 2 and s2 not in s_constrained_values: if s3 == 2 and s2 not in s_constrained_values:
continue continue
if s0 == s2 and s1 == s3:
continue
# Assign all possible states a tuple of values # Assign all possible states a tuple of values
state_key = (s0, s1, s2, s3) state_key = (s0, s1, s2, s3)
q_table[state_key] = [INITIAL_Q_VALUE] * NUM_ACTIONS q_values = [INITIAL_Q_VALUE] * NUM_ACTIONS
# Check which actions are blocked by walls
# Action 0: move left (s0 - 1)
if labyrinth[s1][s0 - 1] == "#":
q_values[0] = 0
# Action 1: move right (s0 + 1)
if labyrinth[s1][s0 + 1] == "#":
q_values[1] = 0
# Action 2: move up (s1 - 1)
if labyrinth[s1 - 1][s0] == "#":
q_values[2] = 0
# Action 3: move down (s1 + 1)
if labyrinth[s1 + 1][s0] == "#":
q_values[3] = 0
q_table[state_key] = q_values
print(f"Total number of valid states initialized: {len(q_table)}") # debugging # print(f"Total number of valid states initialized: {len(q_table)}") # debugging
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries # print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
return q_table return q_table
def epsilon_greedy(q, s, epsilon=0.9): def epsilon_greedy(q, s, epsilon=0.2):
""" """
Return which direction Pacman should move to Return which direction Pacman should move to using epsilon-greedy algorithm
epsilon-greedy algorithm TBD With probability epsilon, choose a random action. Otherwise choose the greedy action.
"""
""" """
q_max = max(q[s]) q_max = max(q[s])
a = q[s].index(q_max) a = q[s].index(q_max)
return a return a
"""
if np.random.random() < epsilon:
# Explore: choose random action (excluding blocked actions with Q=0)
valid_actions = [i for i in range(len(q[s])) if q[s][i] > 0]
if valid_actions:
return np.random.choice(valid_actions)
else:
return np.random.randint(0, len(q[s]))
else:
# Exploit: choose best action
valid_q_values = [(i, q[s][i]) for i in range(len(q[s])) if q[s][i] > 0]
if valid_q_values:
# Get max Q-value among valid actions
best_action = max(valid_q_values, key=lambda x: x[1])[0]
return best_action
else:
return 0
def bfs_distance(start, end, labyrinth):
"""
Calculate shortest path distance between two points using BFS.
Returns the distance or infinity if no path exists.
"""
from collections import deque
if start == end:
return 0
queue = deque([(start, 0)]) # (position, distance)
visited = {start}
while queue:
(x, y), dist = queue.popleft()
# Check all 4 directions
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
nx, ny = x + dx, y + dy
if (nx, ny) == end:
return dist + 1
if 0 <= ny < len(labyrinth) and 0 <= nx < len(labyrinth[0]):
if (nx, ny) not in visited and labyrinth[ny][nx] != "#":
visited.add((nx, ny))
queue.append(((nx, ny), dist + 1))
return float('inf') # No path found
def take_action(s, a, labyrinth): def take_action(s, a, labyrinth):
s_new = list(s) s_new = list(s)
if a == 0: if a == 0: # left
s_new[0] -= 1 s_new[0] -= 1
if a == 1: if a == 1: # right
s_new[0] += 1 s_new[0] += 1
if a == 2: if a == 2: # up
s_new[1] += 1
if a == 3:
s_new[1] -= 1 s_new[1] -= 1
if a == 3: # down
s_new[1] += 1
# consider if there is a point on the field # consider if there is a point on the field
r = 1 if labyrinth[s_new[0]][s_new[1]] == "." else 0 r = 3 if labyrinth[s_new[1]][s_new[0]] == "." else -1
# consider new distance between Pacman and Ghost
distance = abs(s[0] - s[2]) + abs(s[1] - s[3]) # consider new distance between Pacman and Ghost using actual pathfinding
distance_new = abs(s_new[0] - s_new[2]) + abs(s_new[1] - s_new[3]) pacman_pos = (s[0], s[1])
r += distance_new - distance # adjust this value if necessary ghost_pos = (s[2], s[3])
pacman_pos_new = (s_new[0], s_new[1])
distance = bfs_distance(pacman_pos, ghost_pos, labyrinth)
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
# Reward for increasing distance from ghost (moving away is good)
if distance_new > distance:
r += 0.5 # Bonus for moving away
elif distance_new < distance:
r -= 1.0 # Penalty for moving closer
return tuple(s_new), r return tuple(s_new), r