status quo
parent
ec2060c375
commit
476b67fa71
|
|
@ -172,20 +172,6 @@ def train(q, num_iterations=10000):
|
|||
iter = iter + 1
|
||||
total_iterations += 1
|
||||
|
||||
# Check for collisions
|
||||
if pacman_x == ghost_x and pacman_y == ghost_y:
|
||||
running = False
|
||||
break
|
||||
|
||||
# Eat cookies
|
||||
if labyrinth[pacman_y][pacman_x] == ".":
|
||||
labyrinth[pacman_y] = labyrinth[pacman_y][:pacman_x] + " " + labyrinth[pacman_y][pacman_x+1:]
|
||||
|
||||
# Check if all cookies are eaten
|
||||
if all("." not in row for row in labyrinth):
|
||||
running = False
|
||||
break
|
||||
|
||||
# Q-Learning
|
||||
a = rl.epsilon_greedy(q, s)
|
||||
s_new, r, labyrinth = rl.take_action(s, a, labyrinth)
|
||||
|
|
@ -214,6 +200,20 @@ def train(q, num_iterations=10000):
|
|||
ghost_y -= 1
|
||||
|
||||
s = (pacman_x, pacman_y, ghost_x, ghost_y)
|
||||
|
||||
# Check for collisions
|
||||
if pacman_x == ghost_x and pacman_y == ghost_y:
|
||||
running = False
|
||||
break
|
||||
|
||||
# Eat cookies
|
||||
if labyrinth[pacman_y][pacman_x] == ".":
|
||||
labyrinth[pacman_y] = labyrinth[pacman_y][:pacman_x] + " " + labyrinth[pacman_y][pacman_x+1:]
|
||||
|
||||
# Check if all cookies are eaten
|
||||
if all("." not in row for row in labyrinth):
|
||||
running = False
|
||||
break
|
||||
|
||||
outer_iter += 1
|
||||
if outer_iter % 100 == 0:
|
||||
|
|
@ -250,6 +250,19 @@ def visualize(q, num_games=10):
|
|||
screen.fill(BLACK)
|
||||
iter = iter + 1
|
||||
|
||||
# Q-Learning
|
||||
a = rl.epsilon_greedy(q, s, epsilon=0.025)
|
||||
s_new, r, labyrinth = rl.take_action(s, a, labyrinth)
|
||||
q[s][a] += ALPHA * (r + GAMMA * rl.max_q(q, s_new, labyrinth) - q[s][a])
|
||||
s = s_new
|
||||
|
||||
move_pacman(pacman, a)
|
||||
|
||||
if iter % 3 == 0:
|
||||
ghost.move_towards_pacman(pacman)
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y)
|
||||
|
||||
# Check for collisions
|
||||
if pacman.x == ghost.x and pacman.y == ghost.y:
|
||||
print("Game Over! The ghost caught Pacman.")
|
||||
|
|
@ -266,19 +279,6 @@ def visualize(q, num_games=10):
|
|||
running = False
|
||||
break
|
||||
|
||||
# Q-Learning
|
||||
a = rl.epsilon_greedy(q, s)
|
||||
s_new, r, labyrinth = rl.take_action(s, a, labyrinth)
|
||||
q[s][a] += ALPHA * (r + GAMMA * rl.max_q(q, s_new, labyrinth) - q[s][a])
|
||||
s = s_new
|
||||
|
||||
move_pacman(pacman, a)
|
||||
|
||||
if iter % 3 == 0:
|
||||
ghost.move_towards_pacman(pacman)
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y)
|
||||
|
||||
# Draw
|
||||
draw_labyrinth()
|
||||
pacman.draw()
|
||||
|
|
@ -298,7 +298,7 @@ def main():
|
|||
q = rl.q_init()
|
||||
|
||||
print("Training for 10000 iterations...")
|
||||
q = train(q, num_iterations=10000)
|
||||
q = train(q, num_iterations=5000)
|
||||
|
||||
print("\nTraining complete! Starting visualization...")
|
||||
visualize(q, num_games=10)
|
||||
|
|
|
|||
|
|
@ -72,41 +72,41 @@ def q_init():
|
|||
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
|
||||
return q_table
|
||||
|
||||
def epsilon_greedy(q, s, epsilon=0.1):
|
||||
def epsilon_greedy(q, s, epsilon=0.025):
|
||||
"""
|
||||
Return which direction Pacman should move to using epsilon-greedy algorithm
|
||||
With probability epsilon, choose a random action. Otherwise choose the greedy action.
|
||||
Avoids actions that would result in collision with ghost.
|
||||
"""
|
||||
# if np.random.random() < epsilon:
|
||||
# # Explore: choose random action (excluding blocked actions with Q=0)
|
||||
# valid_actions = [i for i in range(len(q[s])) if q[s][i] is not None]
|
||||
# return np.random.choice(valid_actions)
|
||||
if np.random.random() < epsilon:
|
||||
# Explore: choose random action (excluding blocked actions with Q=0)
|
||||
valid_actions = [i for i in range(len(q[s])) if q[s][i] is not None]
|
||||
return np.random.choice(valid_actions)
|
||||
|
||||
# else:
|
||||
# Get all valid (non-blocked) actions with their Q-values
|
||||
valid_actions = [(i, q[s][i]) for i in range(len(q[s])) if q[s][i] is not None]
|
||||
|
||||
# Sort by Q-value in descending order
|
||||
valid_actions.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# Try each action starting from highest Q-value
|
||||
for a, q_val in valid_actions:
|
||||
s_test = list(s)
|
||||
if a == 0: # left
|
||||
s_test[0] -= 1
|
||||
elif a == 1: # right
|
||||
s_test[0] += 1
|
||||
elif a == 2: # up
|
||||
s_test[1] -= 1
|
||||
elif a == 3: # down
|
||||
s_test[1] += 1
|
||||
else:
|
||||
# Get all valid (non-blocked) actions with their Q-values
|
||||
valid_actions = [(i, q[s][i]) for i in range(len(q[s])) if q[s][i] is not None]
|
||||
|
||||
return a
|
||||
# Sort by Q-value in descending order
|
||||
valid_actions.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# Try each action starting from highest Q-value
|
||||
for a, q_val in valid_actions:
|
||||
s_test = list(s)
|
||||
if a == 0: # left
|
||||
s_test[0] -= 1
|
||||
elif a == 1: # right
|
||||
s_test[0] += 1
|
||||
elif a == 2: # up
|
||||
s_test[1] -= 1
|
||||
elif a == 3: # down
|
||||
s_test[1] += 1
|
||||
|
||||
return a
|
||||
|
||||
def calc_reward(s_new, labyrinth):
|
||||
# Reward for cookies; punish for not eating cookies
|
||||
r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -1.0
|
||||
r = 1.0 if labyrinth[s_new[1]][s_new[0]] == "." else -1.0
|
||||
|
||||
return r
|
||||
|
||||
|
|
|
|||
|
|
@ -19,13 +19,13 @@ print("Loading MNIST...") # debugging
|
|||
prototype_data = prototype_data_raw.reshape(prototype_data_raw.shape[0], -1).astype(np.float32)
|
||||
test_data = test_data_raw.reshape(test_data_raw.shape[0], -1).astype(np.float32)
|
||||
|
||||
print("Train:", prototype_data.shape, "Test:", test_data.shape)
|
||||
# print("Train:", prototype_data.shape, "Test:", test_data.shape) # debugging
|
||||
|
||||
# Select first 1000 prototype vectors
|
||||
prototypes = prototype_data[:1000]
|
||||
prototype_labels = prototype_labels_set[:1000]
|
||||
|
||||
print("Using", len(prototypes), "prototype vectors.") # debugging
|
||||
# print("Using", len(prototypes), "prototype vectors.") # debugging
|
||||
|
||||
# kNN function with explicit loops for readability
|
||||
def knn_predict_batch(X_batch, k=3):
|
||||
|
|
|
|||
Loading…
Reference in New Issue