code cleanup

master
Ruben-FreddyLoafers 2025-10-28 15:48:52 +01:00
parent 9a61a7f1d6
commit 4de71f8850
2 changed files with 52 additions and 76 deletions

View File

@ -10,7 +10,6 @@ Taylor-Reihe um 0.
import numpy as np
import random
import struct
import time
import utils
@ -61,9 +60,9 @@ def eval_fitness(bin_pop_values):
# Create polynomial function with current parameters
approx = lambda x: a*x**3 + b*x**2 + c*x + d
e_func = lambda x: np.e**x
quad_error = quadratic_error(e_func, approx, 3)
quad_error = quadratic_error(e_func, approx, 3) # the bigger the error, the worse the fitness
inverse_fitness = 1 / quad_error # the bigger the error, the worse the fitness
inverse_fitness = 1 / quad_error # using inverse to find small errors easier
# print("Fitness: " + str(inverse_fitness)) # debugging
fitness_arr.append(inverse_fitness) # save fitness
@ -129,52 +128,41 @@ def mutate(population, mutation_rate):
# Convert back to string and update population
population[random_num] = ''.join(bits) # will work because lists are passed by reference
def main():
global gray_pop, bin_pop, bin_pop_params, new_pop, fitness, fitness_arr
bin_pop_values = generate_random_population(POPULATION_SIZE)
iteration = 0
print("Working...")
while not np.any((np.array(fitness_arr)) > 200): # Continue while any fitness value is > 1
# print("Iteration: " + str(iteration)) # debugging
# Evaluate fitness
fitness_arr = eval_fitness(bin_pop_values)
# Selection
new_pop = select(fitness_arr) # assigns
# Crossover
offspring = xover(gray_pop)
new_pop.extend(offspring) # Add offspring to population
# Mutation
mutate(new_pop, MUTATION_BITS)
# Update populations for next generation
gray_pop = new_pop.copy()
bin_pop_values = []
for gray_bin_string in gray_pop:
bin_str = utils.gray_to_bin(gray_bin_string)
params = [bin_str[i:i+7] for i in range(0, 31, 8)]
bin_pop_values.append(params)
# time.sleep(0.5)
iteration += 1
max_fitness_index = np.argmax(np.array(fitness_arr))
a, b, c, d = [utils.bin_to_param(param) for param in bin_pop_values[max_fitness_index]]
print("index: " + str(max_fitness_index))
print("a: " + str(a) + "; b: " + str(b) + "; c: " + str(c) + "; d: " + str(d) )
utils.plot_graph(a, b, c, d)
return 0
bin_pop_values = generate_random_population(POPULATION_SIZE)
if __name__ == "__main__":
main()
print("found that shit")
print("Working...")
# iteration = 0 # debugging
while not np.any((np.array(fitness_arr)) > 200): # Continue while any fitness value is > 1
# print("Iteration: " + str(iteration)) # debugging
# Evaluate fitness
fitness_arr = eval_fitness(bin_pop_values)
# Selection
new_pop = select(fitness_arr) # assigns
# Crossover
offspring = xover(gray_pop)
new_pop.extend(offspring) # Add offspring to population
# Mutation
mutate(new_pop, MUTATION_BITS)
# Update populations for next generation
gray_pop = new_pop.copy()
bin_pop_values = []
for gray_bin_string in gray_pop:
bin_str = utils.gray_to_bin(gray_bin_string)
params = [bin_str[i:i+7] for i in range(0, 31, 8)]
bin_pop_values.append(params)
# time.sleep(0.5) # debugging
# iteration += 1 # debugging
max_fitness_index = np.argmax(np.array(fitness_arr))
a, b, c, d = [utils.bin_to_param(param) for param in bin_pop_values[max_fitness_index]]
# print("index: " + str(max_fitness_index)) # debugging
print("a: " + str(a) + "; b: " + str(b) + "; c: " + str(c) + "; d: " + str(d) )
utils.plot_graph(a, b, c, d)

View File

@ -6,43 +6,31 @@ def gray_to_bin(gray):
Convert Gray code to binary, operating on the integer value directly.
:returns: 32-bit String
"""
try:
num = int(gray, 2) # Convert string to integer
mask = num
while mask != 0:
mask >>= 1
num ^= mask
return format(num, '032b') # Always return 32-bit string
except ValueError as e:
print(f"Error in gray_to_bin with input: '{gray}'")
raise e
num = int(gray, 2) # Convert string to integer
mask = num
while mask != 0:
mask >>= 1
num ^= mask
return format(num, '032b') # Always return 32-bit string
def bin_to_gray(binary):
"""
Convert binary to Gray code using XOR with right shift
:returns: 32-bit String
"""
try:
num = int(binary, 2) # Convert string to integer
gray = num ^ (num >> 1) # Gray code formula: G = B ^ (B >> 1)
return format(gray, '032b') # Always return 32-bit string
except ValueError as e:
print(f"Error in bin_to_gray with input: '{binary}'")
raise e
num = int(binary, 2) # Convert string to integer
gray = num ^ (num >> 1) # Gray code formula: G = B ^ (B >> 1)
return format(gray, '032b') # Always return 32-bit string
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
"""
Convert one binary string to float parameter in range [q_min, q_max]
:returns: float
"""
try:
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
# Scale to range [q_min, q_max]
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
return q
except ValueError as e:
print(f"Error in bin_to_param with input: '{binary}'")
raise e
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
# Scale to range [q_min, q_max]
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
return q
def plot_graph(a, b, c, d):
x = np.arange(-5., 5., 0.1)