mutate function done?

master
Ruben-FreddyLoafers 2025-10-20 12:56:15 +02:00
parent a6b906d9b3
commit 6547edc23e
2 changed files with 53 additions and 20 deletions

View File

@ -18,17 +18,20 @@ import utils
POPULATION_SIZE = 10
SELECTION_SIZE = (POPULATION_SIZE * 7) // 10 # 70% of population, rounded down for selection
CROSSOVER_PAIR_SIZE = (POPULATION_SIZE - SELECTION_SIZE) // 2 # pairs needed for crossover
XOVER_POINT = 3
XOVER_POINT = 3 # 4th position
MUTATION_BITS = POPULATION_SIZE * 1
fitness = 0.01
pop_grey = []
pop_bin = []
pop_bin = [] # 32 Bit Binary
pop_bin_params = []
pop_new = []
pop_new = [] # 32 Bit Grey-Code as String
e_func = lambda x: np.e**x
def generate_random_population():
""" Puts random 32 Bit binary strings into 4 * 8 Bit long params. """
# Random population array
for i in range(POPULATION_SIZE):
pop_grey[i] = format(random.getrandbits(32), '32b')
pop_bin[i] = utils.grey_to_bin(pop_grey[i])
@ -45,7 +48,7 @@ def quadratic_error(original_fn, approx_fn, n):
return error
def eval_fitness(pop_bin_values):
""" Returns an array with fitness value of every individual in a population."""
""" Returns an array with fitness value of every individual in a population. """
fitness_arr = []
for params in pop_bin_values:
# Convert binary string to parameters for bin_values
@ -61,9 +64,10 @@ def eval_fitness(pop_bin_values):
return fitness_arr
def select(fitness_arr):
def select(population, fitness_arr):
sum_of_fitness = sum(fitness_arr)
while len(pop_new) < SELECTION_SIZE:
while len(population) < SELECTION_SIZE:
# Roulette logic
roulette_num = random.random()
is_chosen = False
while not is_chosen:
@ -71,8 +75,8 @@ def select(fitness_arr):
for i, fitness in enumerate(fitness_arr):
cumulative_p += fitness / sum_of_fitness
if roulette_num < cumulative_p:
# Add the 32 Bit individual in grey code to pop_new
pop_new.append(pop_grey[i])
# Add the 32 Bit individual in grey code to population
population.append(pop_grey[i])
# Calc new sum of fitness
fitness_arr.pop(i)
@ -81,30 +85,59 @@ def select(fitness_arr):
is_chosen = True # break while loop
break # break for loop
def xover():
# calc how many pairs are possible with pop_new
individual_a = pop_new[0]
individual_b = pop_new[1]
def xover(population, xover_rate):
"""Performs crossover on pairs of individuals from population."""
offspring = []
# get first three pairs in pop_new
# do the crossover
# Process pairs while we have enough individuals and haven't reached CROSSOVER_PAIR_SIZE
pair_count = 0
i = 0
while i < len(population) - 1 and pair_count < xover_rate:
parent_a = population[i]
parent_b = population[i + 1]
# Create two new offspring by swapping parts at XOVER_POINT
offspring_a = parent_a[:XOVER_POINT] + parent_b[XOVER_POINT:]
offspring_b = parent_b[:XOVER_POINT] + parent_a[XOVER_POINT:]
offspring.extend([offspring_a, offspring_b])
pair_count += 1
i += 2 # Move to next pair
return offspring
def mutate(population, mutation_rate):
"""Mutate random bits in the population with given mutation rate"""
for _ in range(mutation_rate):
# Select random individual and convert to list for efficient modification
random_num = random.randrange(POPULATION_SIZE)
bits = list(population[random_num])
# Flip random bit
bit_pos = random.randrange(32)
bits[bit_pos] = '1' if bits[bit_pos] == '0' else '0'
# Convert back to string and update population
population[random_num] = ''.join(bits)
def main():
pop_bin_values = generate_random_population(10)
while fitness > 0.01:
while fitness > 0.01:
# Evaluate fitness
fitness_arr = eval_fitness(pop_bin_values)
# Selection
select(fitness_arr) # Alters pop_new
select(pop_new, fitness_arr) # Alters pop_new
# Crossover
offspring = xover(pop_new, CROSSOVER_PAIR_SIZE)
pop_new.extend(offspring) # .extend needed
# mutation
# Mutation
mutate(pop_new, MUTATION_BITS)
# pop_grey = pop_new
pop_grey = pop_new
return 0
if __name__ == "__main__":

View File

@ -14,7 +14,7 @@ def bin_to_grey(binary):
return format(gray, f'0{len(binary)}b') # Convert back to binary string with same length
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
"""Convert binary string to float parameter in range [q_min, q_max]"""
"""Convert one binary string to float parameter in range [q_min, q_max]"""
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
# Scale to range [q_min, q_max]
q = q_min + ((q_max - q_min) / (2**len(binary))) * val