mutate function done?
parent
a6b906d9b3
commit
6547edc23e
|
|
@ -18,17 +18,20 @@ import utils
|
|||
POPULATION_SIZE = 10
|
||||
SELECTION_SIZE = (POPULATION_SIZE * 7) // 10 # 70% of population, rounded down for selection
|
||||
CROSSOVER_PAIR_SIZE = (POPULATION_SIZE - SELECTION_SIZE) // 2 # pairs needed for crossover
|
||||
XOVER_POINT = 3
|
||||
XOVER_POINT = 3 # 4th position
|
||||
MUTATION_BITS = POPULATION_SIZE * 1
|
||||
|
||||
fitness = 0.01
|
||||
pop_grey = []
|
||||
pop_bin = []
|
||||
pop_bin = [] # 32 Bit Binary
|
||||
pop_bin_params = []
|
||||
pop_new = []
|
||||
pop_new = [] # 32 Bit Grey-Code as String
|
||||
|
||||
e_func = lambda x: np.e**x
|
||||
|
||||
def generate_random_population():
|
||||
""" Puts random 32 Bit binary strings into 4 * 8 Bit long params. """
|
||||
# Random population array
|
||||
for i in range(POPULATION_SIZE):
|
||||
pop_grey[i] = format(random.getrandbits(32), '32b')
|
||||
pop_bin[i] = utils.grey_to_bin(pop_grey[i])
|
||||
|
|
@ -45,7 +48,7 @@ def quadratic_error(original_fn, approx_fn, n):
|
|||
return error
|
||||
|
||||
def eval_fitness(pop_bin_values):
|
||||
""" Returns an array with fitness value of every individual in a population."""
|
||||
""" Returns an array with fitness value of every individual in a population. """
|
||||
fitness_arr = []
|
||||
for params in pop_bin_values:
|
||||
# Convert binary string to parameters for bin_values
|
||||
|
|
@ -61,9 +64,10 @@ def eval_fitness(pop_bin_values):
|
|||
|
||||
return fitness_arr
|
||||
|
||||
def select(fitness_arr):
|
||||
def select(population, fitness_arr):
|
||||
sum_of_fitness = sum(fitness_arr)
|
||||
while len(pop_new) < SELECTION_SIZE:
|
||||
while len(population) < SELECTION_SIZE:
|
||||
# Roulette logic
|
||||
roulette_num = random.random()
|
||||
is_chosen = False
|
||||
while not is_chosen:
|
||||
|
|
@ -71,8 +75,8 @@ def select(fitness_arr):
|
|||
for i, fitness in enumerate(fitness_arr):
|
||||
cumulative_p += fitness / sum_of_fitness
|
||||
if roulette_num < cumulative_p:
|
||||
# Add the 32 Bit individual in grey code to pop_new
|
||||
pop_new.append(pop_grey[i])
|
||||
# Add the 32 Bit individual in grey code to population
|
||||
population.append(pop_grey[i])
|
||||
|
||||
# Calc new sum of fitness
|
||||
fitness_arr.pop(i)
|
||||
|
|
@ -81,30 +85,59 @@ def select(fitness_arr):
|
|||
is_chosen = True # break while loop
|
||||
break # break for loop
|
||||
|
||||
def xover():
|
||||
# calc how many pairs are possible with pop_new
|
||||
individual_a = pop_new[0]
|
||||
individual_b = pop_new[1]
|
||||
def xover(population, xover_rate):
|
||||
"""Performs crossover on pairs of individuals from population."""
|
||||
offspring = []
|
||||
|
||||
|
||||
# get first three pairs in pop_new
|
||||
# do the crossover
|
||||
# Process pairs while we have enough individuals and haven't reached CROSSOVER_PAIR_SIZE
|
||||
pair_count = 0
|
||||
i = 0
|
||||
while i < len(population) - 1 and pair_count < xover_rate:
|
||||
parent_a = population[i]
|
||||
parent_b = population[i + 1]
|
||||
|
||||
# Create two new offspring by swapping parts at XOVER_POINT
|
||||
offspring_a = parent_a[:XOVER_POINT] + parent_b[XOVER_POINT:]
|
||||
offspring_b = parent_b[:XOVER_POINT] + parent_a[XOVER_POINT:]
|
||||
|
||||
offspring.extend([offspring_a, offspring_b])
|
||||
pair_count += 1
|
||||
i += 2 # Move to next pair
|
||||
|
||||
return offspring
|
||||
|
||||
def mutate(population, mutation_rate):
|
||||
"""Mutate random bits in the population with given mutation rate"""
|
||||
for _ in range(mutation_rate):
|
||||
# Select random individual and convert to list for efficient modification
|
||||
random_num = random.randrange(POPULATION_SIZE)
|
||||
bits = list(population[random_num])
|
||||
|
||||
# Flip random bit
|
||||
bit_pos = random.randrange(32)
|
||||
bits[bit_pos] = '1' if bits[bit_pos] == '0' else '0'
|
||||
|
||||
# Convert back to string and update population
|
||||
population[random_num] = ''.join(bits)
|
||||
|
||||
def main():
|
||||
pop_bin_values = generate_random_population(10)
|
||||
while fitness > 0.01:
|
||||
while fitness > 0.01:
|
||||
|
||||
# Evaluate fitness
|
||||
fitness_arr = eval_fitness(pop_bin_values)
|
||||
|
||||
# Selection
|
||||
select(fitness_arr) # Alters pop_new
|
||||
select(pop_new, fitness_arr) # Alters pop_new
|
||||
|
||||
# Crossover
|
||||
offspring = xover(pop_new, CROSSOVER_PAIR_SIZE)
|
||||
pop_new.extend(offspring) # .extend needed
|
||||
|
||||
# mutation
|
||||
# Mutation
|
||||
mutate(pop_new, MUTATION_BITS)
|
||||
|
||||
# pop_grey = pop_new
|
||||
pop_grey = pop_new
|
||||
return 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ def bin_to_grey(binary):
|
|||
return format(gray, f'0{len(binary)}b') # Convert back to binary string with same length
|
||||
|
||||
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
|
||||
"""Convert binary string to float parameter in range [q_min, q_max]"""
|
||||
"""Convert one binary string to float parameter in range [q_min, q_max]"""
|
||||
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
|
||||
# Scale to range [q_min, q_max]
|
||||
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
|
||||
|
|
|
|||
Loading…
Reference in New Issue