mental breakdown
parent
6f7dcb8326
commit
6c9a096b61
|
|
@ -127,7 +127,6 @@ def main():
|
|||
ghost = Ghost(COLS - 2, ROWS - 2)
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
|
||||
q = rl.q_init()
|
||||
gamma = 0.9
|
||||
alpha = 0.8
|
||||
|
|
@ -162,38 +161,24 @@ def main():
|
|||
running = False
|
||||
|
||||
# Start of my code
|
||||
# s_not_terminal = True
|
||||
# while s_not_terminal:
|
||||
s_not_terminal = True
|
||||
while s_not_terminal:
|
||||
print("s: " + str(s))
|
||||
print("q[s] before action: " + str(q[s]))
|
||||
|
||||
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
s_new, r = rl.take_action(s, a, labyrinth)
|
||||
move_pacman(pacman, a)
|
||||
|
||||
q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
|
||||
q[s_new][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[s][opposite_action[a]]), 2)
|
||||
|
||||
# Update Q-values for all states with the same Pacman position (s0, s1)
|
||||
pacman_s0, pacman_s1 = s_new[0], s_new[1]
|
||||
for state_key in q:
|
||||
if state_key[0] == pacman_s0 and state_key[1] == pacman_s1:
|
||||
# Update this state's Q-values based on the current transition, but only if action is valid
|
||||
if q[state_key][a] > 0: # Only update if action is not blocked
|
||||
q[state_key][a] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][a]), 2)
|
||||
if q[state_key][opposite_action[a]] > 0: # Only update if opposite action is not blocked
|
||||
q[state_key][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][opposite_action[a]]), 2)
|
||||
s = s_new
|
||||
|
||||
print("s_new: " + str(s_new))
|
||||
print("q[s] after action with manipulated a: " + str(q[s]))
|
||||
print("q[s_new] after action: " + str(q[s_new]))
|
||||
print()
|
||||
if abs(r - q[s_new][a]) < 0.2: # Reward difference is small (convergence)
|
||||
s_not_terminal = False
|
||||
|
||||
# s = s_new
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y)
|
||||
time.sleep(0.5)
|
||||
time.sleep(0.2)
|
||||
|
||||
gamma *= gamma
|
||||
move_pacman(pacman, a)
|
||||
|
||||
# Draw the labyrinth, pacman, and ghost
|
||||
draw_labyrinth()
|
||||
|
|
@ -210,3 +195,17 @@ def main():
|
|||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
"""
|
||||
for state_key in q:
|
||||
if state_key[0] == s_new[0] and state_key[1] == s_new[1]:
|
||||
# Update this state's Q-values based on the current transition, but only if action is valid
|
||||
if q[state_key][a] > 0: # Only update if action is not blocked
|
||||
q[state_key][a] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][a]), 2)
|
||||
if q[state_key][opposite_action[a]] > 0: # Only update if opposite action is not blocked
|
||||
q[state_key][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][opposite_action[a]]), 2)
|
||||
print("s_new: " + str(s_new))
|
||||
print("q[s] after action with manipulated a: " + str(q[s]))
|
||||
print("q[s_new] after action: " + str(q[s_new]))
|
||||
print()
|
||||
"""
|
||||
|
|
@ -12,7 +12,7 @@ def q_init():
|
|||
|
||||
# Configuration
|
||||
NUM_ACTIONS = 4
|
||||
INITIAL_Q_VALUE = 1.0 # Small value for initialization
|
||||
INITIAL_Q_VALUE = 3.0 # Small value for initialization
|
||||
|
||||
# Labyrinth layout
|
||||
labyrinth = [
|
||||
|
|
@ -145,26 +145,17 @@ def take_action(s, a, labyrinth):
|
|||
if a == 3: # down
|
||||
s_new[1] += 1
|
||||
|
||||
# consider if there is a point on the field
|
||||
# r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
|
||||
r = -2
|
||||
|
||||
# consider new distance between Pacman and Ghost using actual pathfinding
|
||||
pacman_pos = (s[0], s[1])
|
||||
ghost_pos = (s[2], s[3])
|
||||
pacman_pos_new = (s_new[0], s_new[1])
|
||||
ghost_pos = (s[2], s[3])
|
||||
|
||||
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
|
||||
|
||||
# Reward based on distance from ghost (closer distance = worse reward)
|
||||
if distance_new >= 5:
|
||||
r -= 2.0 # Good reward for being far away
|
||||
elif distance_new >= 3:
|
||||
r -= 1.0 # Small reward for being moderately far
|
||||
elif distance_new <= 2:
|
||||
r += 5.0 # Large penalty for being adjacent to ghost
|
||||
elif distance_new == 1:
|
||||
r += 10.0 # Large penalty for being adjacent to ghost
|
||||
# Reward inversely proportional to distance from ghost (asymptotes to 0)
|
||||
r = 1.0 / (1.0 + distance_new) if distance_new != float('inf') else 0.0
|
||||
|
||||
# Reward for eating cookies
|
||||
r += 5.0 if labyrinth[s_new[1]][s_new[0]] == "." else -2.0
|
||||
|
||||
# Ensure reward doesn't drop below 0.01
|
||||
r = max(r, 0.01)
|
||||
|
|
|
|||
Loading…
Reference in New Issue