debugging
parent
ee04e00627
commit
6f7dcb8326
|
|
@ -127,7 +127,7 @@ def main():
|
||||||
ghost = Ghost(COLS - 2, ROWS - 2)
|
ghost = Ghost(COLS - 2, ROWS - 2)
|
||||||
|
|
||||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||||
a_prev = 4
|
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
|
||||||
q = rl.q_init()
|
q = rl.q_init()
|
||||||
gamma = 0.9
|
gamma = 0.9
|
||||||
alpha = 0.8
|
alpha = 0.8
|
||||||
|
|
@ -167,22 +167,33 @@ def main():
|
||||||
print("s: " + str(s))
|
print("s: " + str(s))
|
||||||
print("q[s] before action: " + str(q[s]))
|
print("q[s] before action: " + str(q[s]))
|
||||||
|
|
||||||
|
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||||
a = rl.epsilon_greedy(q, s, a_prev) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
|
||||||
s_new, r = rl.take_action(s, a, labyrinth)
|
s_new, r = rl.take_action(s, a, labyrinth)
|
||||||
move_pacman(pacman, a)
|
move_pacman(pacman, a)
|
||||||
|
|
||||||
q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
|
q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
|
||||||
|
q[s_new][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[s][opposite_action[a]]), 2)
|
||||||
|
|
||||||
|
# Update Q-values for all states with the same Pacman position (s0, s1)
|
||||||
|
pacman_s0, pacman_s1 = s_new[0], s_new[1]
|
||||||
|
for state_key in q:
|
||||||
|
if state_key[0] == pacman_s0 and state_key[1] == pacman_s1:
|
||||||
|
# Update this state's Q-values based on the current transition, but only if action is valid
|
||||||
|
if q[state_key][a] > 0: # Only update if action is not blocked
|
||||||
|
q[state_key][a] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][a]), 2)
|
||||||
|
if q[state_key][opposite_action[a]] > 0: # Only update if opposite action is not blocked
|
||||||
|
q[state_key][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][opposite_action[a]]), 2)
|
||||||
|
|
||||||
print("s_new: " + str(s_new))
|
print("s_new: " + str(s_new))
|
||||||
print("q[s] after action with manipulated a: " + str(q[s]))
|
print("q[s] after action with manipulated a: " + str(q[s]))
|
||||||
print("q[s_new] after action: " + str(q[s_new]))
|
print("q[s_new] after action: " + str(q[s_new]))
|
||||||
print()
|
print()
|
||||||
|
|
||||||
s = s_new
|
# s = s_new
|
||||||
a_prev = a
|
s = (pacman.x, pacman.y, ghost.x, ghost.y)
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
|
|
||||||
#gamma *= gamma
|
gamma *= gamma
|
||||||
|
|
||||||
# Draw the labyrinth, pacman, and ghost
|
# Draw the labyrinth, pacman, and ghost
|
||||||
draw_labyrinth()
|
draw_labyrinth()
|
||||||
|
|
|
||||||
|
|
@ -12,7 +12,7 @@ def q_init():
|
||||||
|
|
||||||
# Configuration
|
# Configuration
|
||||||
NUM_ACTIONS = 4
|
NUM_ACTIONS = 4
|
||||||
INITIAL_Q_VALUE = 2.0 # Small value for initialization
|
INITIAL_Q_VALUE = 1.0 # Small value for initialization
|
||||||
|
|
||||||
# Labyrinth layout
|
# Labyrinth layout
|
||||||
labyrinth = [
|
labyrinth = [
|
||||||
|
|
@ -70,7 +70,7 @@ def q_init():
|
||||||
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
|
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
|
||||||
return q_table
|
return q_table
|
||||||
|
|
||||||
def epsilon_greedy(q, s, a_prev, epsilon=0.2):
|
def epsilon_greedy(q, s, epsilon=0.2):
|
||||||
"""
|
"""
|
||||||
Return which direction Pacman should move to using epsilon-greedy algorithm
|
Return which direction Pacman should move to using epsilon-greedy algorithm
|
||||||
With probability epsilon, choose a random action. Otherwise choose the greedy action.
|
With probability epsilon, choose a random action. Otherwise choose the greedy action.
|
||||||
|
|
@ -78,32 +78,9 @@ def epsilon_greedy(q, s, a_prev, epsilon=0.2):
|
||||||
Never allows Pacman to move backwards (opposite direction).
|
Never allows Pacman to move backwards (opposite direction).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
|
|
||||||
|
|
||||||
q_max = max(q[s])
|
q_max = max(q[s])
|
||||||
a = q[s].index(q_max)
|
a = q[s].index(q_max)
|
||||||
|
|
||||||
"""
|
|
||||||
# Find all actions with the maximum Q-value
|
|
||||||
max_actions = [a for a in range(4) if q[s][a] == q_max]
|
|
||||||
|
|
||||||
# Exclude the opposite action (going backwards)
|
|
||||||
if a_prev in opposite_action:
|
|
||||||
backward_action = opposite_action[a_prev]
|
|
||||||
if backward_action in max_actions:
|
|
||||||
max_actions.remove(backward_action)
|
|
||||||
|
|
||||||
# If no actions left after removing backward action, allow it (no choice)
|
|
||||||
if not max_actions:
|
|
||||||
max_actions = [a for a in range(4) if q[s][a] == q_max]
|
|
||||||
if a_prev in opposite_action:
|
|
||||||
backward_action = opposite_action[a_prev]
|
|
||||||
if backward_action in max_actions:
|
|
||||||
max_actions.remove(backward_action)
|
|
||||||
|
|
||||||
# Return the first valid action
|
|
||||||
a = max_actions[0] if max_actions else 0
|
|
||||||
"""
|
|
||||||
return a
|
return a
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
@ -126,10 +103,6 @@ def epsilon_greedy(q, s, a_prev, epsilon=0.2):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def max_q(q, s_new):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def bfs_distance(start, end, labyrinth):
|
def bfs_distance(start, end, labyrinth):
|
||||||
"""
|
"""
|
||||||
Calculate shortest path distance between two points using BFS.
|
Calculate shortest path distance between two points using BFS.
|
||||||
|
|
@ -151,7 +124,7 @@ def bfs_distance(start, end, labyrinth):
|
||||||
nx, ny = x + dx, y + dy
|
nx, ny = x + dx, y + dy
|
||||||
|
|
||||||
if (nx, ny) == end:
|
if (nx, ny) == end:
|
||||||
return dist + 1
|
return round(dist + 1, 2)
|
||||||
|
|
||||||
if 0 <= ny < len(labyrinth) and 0 <= nx < len(labyrinth[0]):
|
if 0 <= ny < len(labyrinth) and 0 <= nx < len(labyrinth[0]):
|
||||||
if (nx, ny) not in visited and labyrinth[ny][nx] != "#":
|
if (nx, ny) not in visited and labyrinth[ny][nx] != "#":
|
||||||
|
|
@ -173,7 +146,8 @@ def take_action(s, a, labyrinth):
|
||||||
s_new[1] += 1
|
s_new[1] += 1
|
||||||
|
|
||||||
# consider if there is a point on the field
|
# consider if there is a point on the field
|
||||||
r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
|
# r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
|
||||||
|
r = -2
|
||||||
|
|
||||||
# consider new distance between Pacman and Ghost using actual pathfinding
|
# consider new distance between Pacman and Ghost using actual pathfinding
|
||||||
pacman_pos = (s[0], s[1])
|
pacman_pos = (s[0], s[1])
|
||||||
|
|
@ -183,11 +157,16 @@ def take_action(s, a, labyrinth):
|
||||||
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
|
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
|
||||||
|
|
||||||
# Reward based on distance from ghost (closer distance = worse reward)
|
# Reward based on distance from ghost (closer distance = worse reward)
|
||||||
if distance_new >= 4:
|
if distance_new >= 5:
|
||||||
r += 2.0 # Good reward for being far away
|
r -= 2.0 # Good reward for being far away
|
||||||
elif distance_new >= 2:
|
elif distance_new >= 3:
|
||||||
r += 1.0 # Small reward for being moderately far
|
r -= 1.0 # Small reward for being moderately far
|
||||||
|
elif distance_new <= 2:
|
||||||
|
r += 5.0 # Large penalty for being adjacent to ghost
|
||||||
elif distance_new == 1:
|
elif distance_new == 1:
|
||||||
r -= 10.0 # Large penalty for being adjacent to ghost
|
r += 10.0 # Large penalty for being adjacent to ghost
|
||||||
|
|
||||||
|
# Ensure reward doesn't drop below 0.01
|
||||||
|
r = max(r, 0.01)
|
||||||
|
|
||||||
return tuple(s_new), r
|
return tuple(s_new), r
|
||||||
Loading…
Reference in New Issue