debugging

master
Ruben-FreddyLoafers 2025-11-19 20:03:21 +01:00
parent ee04e00627
commit 6f7dcb8326
2 changed files with 32 additions and 42 deletions

View File

@ -127,7 +127,7 @@ def main():
ghost = Ghost(COLS - 2, ROWS - 2)
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
a_prev = 4
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
q = rl.q_init()
gamma = 0.9
alpha = 0.8
@ -167,22 +167,33 @@ def main():
print("s: " + str(s))
print("q[s] before action: " + str(q[s]))
a = rl.epsilon_greedy(q, s, a_prev) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
s_new, r = rl.take_action(s, a, labyrinth)
move_pacman(pacman, a)
q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
q[s_new][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[s][opposite_action[a]]), 2)
# Update Q-values for all states with the same Pacman position (s0, s1)
pacman_s0, pacman_s1 = s_new[0], s_new[1]
for state_key in q:
if state_key[0] == pacman_s0 and state_key[1] == pacman_s1:
# Update this state's Q-values based on the current transition, but only if action is valid
if q[state_key][a] > 0: # Only update if action is not blocked
q[state_key][a] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][a]), 2)
if q[state_key][opposite_action[a]] > 0: # Only update if opposite action is not blocked
q[state_key][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][opposite_action[a]]), 2)
print("s_new: " + str(s_new))
print("q[s] after action with manipulated a: " + str(q[s]))
print("q[s_new] after action: " + str(q[s_new]))
print()
s = s_new
a_prev = a
# s = s_new
s = (pacman.x, pacman.y, ghost.x, ghost.y)
time.sleep(0.5)
#gamma *= gamma
gamma *= gamma
# Draw the labyrinth, pacman, and ghost
draw_labyrinth()

View File

@ -12,7 +12,7 @@ def q_init():
# Configuration
NUM_ACTIONS = 4
INITIAL_Q_VALUE = 2.0 # Small value for initialization
INITIAL_Q_VALUE = 1.0 # Small value for initialization
# Labyrinth layout
labyrinth = [
@ -70,7 +70,7 @@ def q_init():
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
return q_table
def epsilon_greedy(q, s, a_prev, epsilon=0.2):
def epsilon_greedy(q, s, epsilon=0.2):
"""
Return which direction Pacman should move to using epsilon-greedy algorithm
With probability epsilon, choose a random action. Otherwise choose the greedy action.
@ -78,32 +78,9 @@ def epsilon_greedy(q, s, a_prev, epsilon=0.2):
Never allows Pacman to move backwards (opposite direction).
"""
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
q_max = max(q[s])
a = q[s].index(q_max)
"""
# Find all actions with the maximum Q-value
max_actions = [a for a in range(4) if q[s][a] == q_max]
# Exclude the opposite action (going backwards)
if a_prev in opposite_action:
backward_action = opposite_action[a_prev]
if backward_action in max_actions:
max_actions.remove(backward_action)
# If no actions left after removing backward action, allow it (no choice)
if not max_actions:
max_actions = [a for a in range(4) if q[s][a] == q_max]
if a_prev in opposite_action:
backward_action = opposite_action[a_prev]
if backward_action in max_actions:
max_actions.remove(backward_action)
# Return the first valid action
a = max_actions[0] if max_actions else 0
"""
return a
"""
@ -126,10 +103,6 @@ def epsilon_greedy(q, s, a_prev, epsilon=0.2):
"""
def max_q(q, s_new):
pass
def bfs_distance(start, end, labyrinth):
"""
Calculate shortest path distance between two points using BFS.
@ -151,7 +124,7 @@ def bfs_distance(start, end, labyrinth):
nx, ny = x + dx, y + dy
if (nx, ny) == end:
return dist + 1
return round(dist + 1, 2)
if 0 <= ny < len(labyrinth) and 0 <= nx < len(labyrinth[0]):
if (nx, ny) not in visited and labyrinth[ny][nx] != "#":
@ -173,7 +146,8 @@ def take_action(s, a, labyrinth):
s_new[1] += 1
# consider if there is a point on the field
r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
# r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
r = -2
# consider new distance between Pacman and Ghost using actual pathfinding
pacman_pos = (s[0], s[1])
@ -183,11 +157,16 @@ def take_action(s, a, labyrinth):
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
# Reward based on distance from ghost (closer distance = worse reward)
if distance_new >= 4:
r += 2.0 # Good reward for being far away
elif distance_new >= 2:
r += 1.0 # Small reward for being moderately far
if distance_new >= 5:
r -= 2.0 # Good reward for being far away
elif distance_new >= 3:
r -= 1.0 # Small reward for being moderately far
elif distance_new <= 2:
r += 5.0 # Large penalty for being adjacent to ghost
elif distance_new == 1:
r -= 10.0 # Large penalty for being adjacent to ghost
r += 10.0 # Large penalty for being adjacent to ghost
# Ensure reward doesn't drop below 0.01
r = max(r, 0.01)
return tuple(s_new), r