pacman works; commencing finetuning
parent
8049bfe29f
commit
85f81e5f23
|
|
@ -168,8 +168,8 @@ def main():
|
|||
|
||||
while s_not_terminal and iteration < max_iterations:
|
||||
iteration += 1
|
||||
print("s: " + str(s)) # debugging
|
||||
print("q[s] before action: " + str(q[s])) # debugging
|
||||
# print("s: " + str(s)) # debugging
|
||||
# print("q[s] before action: " + str(q[s])) # debugging
|
||||
|
||||
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
s_new, r, labyrinth_copy = rl.take_action(s, a, labyrinth_copy)
|
||||
|
|
@ -179,19 +179,14 @@ def main():
|
|||
if all("." not in row for row in labyrinth_copy):
|
||||
s_not_terminal = False
|
||||
q[s][a] = 10.0
|
||||
print("There is a parallel universe with victory")
|
||||
|
||||
# Check for collisions (game over if ghost catches pacman)
|
||||
if s[0] == s[2] and s[1] == s[3]:
|
||||
s_not_terminal = False
|
||||
q[s][a] = -10.0
|
||||
# print("Collision at s!!! s: " + str(s)) # debugging
|
||||
print("Crashed values now q[s]: " + str(q[s])) # debugging
|
||||
|
||||
s = s_new
|
||||
time.sleep(0.025)
|
||||
|
||||
if iteration >= max_iterations:
|
||||
print(f"Max iterations reached breaking out of loop")
|
||||
print(f"Max iterations reached for this loop ")
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
|
|
|
|||
|
|
@ -72,38 +72,45 @@ def q_init():
|
|||
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
|
||||
return q_table
|
||||
|
||||
def epsilon_greedy(q, s, epsilon=0.2):
|
||||
def epsilon_greedy(q, s, epsilon=0.1):
|
||||
"""
|
||||
Return which direction Pacman should move to using epsilon-greedy algorithm
|
||||
With probability epsilon, choose a random action. Otherwise choose the greedy action.
|
||||
If multiple actions have the same max Q-value, prefer actions different from a_prev.
|
||||
Never allows Pacman to move backwards (opposite direction).
|
||||
Avoids actions that would result in collision with ghost.
|
||||
"""
|
||||
|
||||
q_max = max(x for x in q[s] if isinstance(x, (int, float)))
|
||||
a = q[s].index(q_max)
|
||||
|
||||
return a
|
||||
|
||||
# if np.random.random() < epsilon:
|
||||
# # Explore: choose random action (excluding blocked actions with Q=0)
|
||||
# valid_actions = [i for i in range(len(q[s])) if q[s][i] != None]
|
||||
# # Explore: choose random action (excluding blocked actions with Q=0)
|
||||
# valid_actions = [i for i in range(len(q[s])) if q[s][i] is not None]
|
||||
# if valid_actions:
|
||||
# return np.random.choice(valid_actions)
|
||||
# else:
|
||||
# return np.random.randint(0, len(q[s]))
|
||||
# else:
|
||||
# # Exploit: choose best action
|
||||
# valid_q_values = [(i, q[s][i]) for i in range(len(q[s])) if q[s][i] != None]
|
||||
# if valid_q_values:
|
||||
# # Get max Q-value among valid actions
|
||||
# best_action = max(valid_q_values, key=lambda x: x[1])[0]
|
||||
# return best_action
|
||||
# else:
|
||||
# return 0
|
||||
# Get all valid (non-blocked) actions with their Q-values
|
||||
valid_actions = [(i, q[s][i]) for i in range(len(q[s])) if q[s][i] is not None]
|
||||
|
||||
# Sort by Q-value in descending order
|
||||
valid_actions.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
def max_q(q, s_new, labyrinth, depth=0, max_depth=4):
|
||||
# Try each action starting from highest Q-value
|
||||
for a, q_val in valid_actions:
|
||||
s_test = list(s)
|
||||
if a == 0: # left
|
||||
s_test[0] -= 1
|
||||
elif a == 1: # right
|
||||
s_test[0] += 1
|
||||
elif a == 2: # up
|
||||
s_test[1] -= 1
|
||||
elif a == 3: # down
|
||||
s_test[1] += 1
|
||||
|
||||
# Check if this action would cause collision
|
||||
if s_test[0] == s[2] and s_test[1] == s[3]:
|
||||
continue # Skip this action, try next highest Q-value
|
||||
|
||||
return a
|
||||
|
||||
def max_q(q, s_new, labyrinth, depth=0, max_depth=2):
|
||||
"""Calculate Q-values for all possible actions in state s_new and return the maximum"""
|
||||
q_max = 0
|
||||
for a in range(4):
|
||||
|
|
@ -127,23 +134,6 @@ def max_q(q, s_new, labyrinth, depth=0, max_depth=4):
|
|||
return q_max
|
||||
|
||||
def calc_reward(s_new, labyrinth):
|
||||
"""
|
||||
# consider new distance between Pacman and Ghost using actual pathfinding
|
||||
pacman_pos_new = (s_new[0], s_new[1])
|
||||
ghost_pos = (s_new[2], s_new[3])
|
||||
|
||||
# distance_old = bfs_distance((s[0], s[1]), ghost_pos, labyrinth)
|
||||
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
|
||||
|
||||
r = 0
|
||||
|
||||
if distance_new < 3:
|
||||
r = -3
|
||||
elif distance_new == 4:
|
||||
r = 1.0
|
||||
elif distance_new > 4:
|
||||
r = 2.0
|
||||
"""
|
||||
|
||||
# Reward for cookies
|
||||
r = 1.0 if labyrinth[s_new[1]][s_new[0]] == "." else -1.0
|
||||
|
|
|
|||
Loading…
Reference in New Issue