logic done; debugging commencing
parent
469d1d1a47
commit
a7b43c9037
|
|
@ -107,6 +107,16 @@ def draw_labyrinth():
|
|||
elif cell == ".":
|
||||
pygame.draw.circle(screen, WHITE, (x * CELL_SIZE + CELL_SIZE // 2, y * CELL_SIZE + CELL_SIZE // 2), 5)
|
||||
|
||||
def move_pacman(pacman, a):
|
||||
if a == 0: # left
|
||||
pacman.move(-1, 0)
|
||||
if a == 1: # right
|
||||
pacman.move(1, 0)
|
||||
if a == 2: # up
|
||||
pacman.move(0, -1)
|
||||
if a == 3: # down
|
||||
pacman.move(0, 1)
|
||||
|
||||
# Main game function
|
||||
def main():
|
||||
clock = pygame.time.Clock()
|
||||
|
|
@ -159,20 +169,20 @@ def main():
|
|||
alpha = 0.8
|
||||
gamma = 0.9
|
||||
|
||||
s = [pacman.x, pacman.y, ghost.x, ghost.y]
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||
s_not_terminal = True
|
||||
|
||||
q = rl.q_init()
|
||||
|
||||
while s_not_terminal:
|
||||
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
s_new, r = rl.take_action(s, a)
|
||||
s_new, r = rl.take_action(s, a, labyrinth)
|
||||
move_pacman(pacman, a)
|
||||
|
||||
q[s][a] += alpha * (r + gamma * max_q(q, s_new) - q[s][a])
|
||||
q[s][a] += alpha * (r + gamma * max(q[s_new]) - q[s][a])
|
||||
print(q[s][a])
|
||||
|
||||
s = s_new
|
||||
pass
|
||||
|
||||
|
||||
# Draw the labyrinth, pacman, and ghost
|
||||
draw_labyrinth()
|
||||
|
|
|
|||
|
|
@ -12,31 +12,31 @@ def q_init():
|
|||
|
||||
# Configuration
|
||||
NUM_ACTIONS = 4
|
||||
INITIAL_Q_VALUE = 0.0 # Small value for initialization
|
||||
INITIAL_Q_VALUE = 1.0 # Small value for initialization
|
||||
|
||||
s1_range = range(1, 9)
|
||||
s2_range = range(1, 4)
|
||||
s3_range = range(1, 9)
|
||||
s4_range = range(1, 4)
|
||||
s0_range = range(1, 9)
|
||||
s1_range = range(1, 4)
|
||||
s2_range = range(1, 9)
|
||||
s3_range = range(1, 4)
|
||||
s_constrained_values = {1, 4, 5, 8}
|
||||
|
||||
# The Q-Table dictionary
|
||||
q_table = {}
|
||||
|
||||
# Iterate through all possible combinations of s1, s2, s3, s4
|
||||
for s1 in s1_range:
|
||||
for s2 in s2_range:
|
||||
for s3 in s3_range:
|
||||
for s4 in s4_range:
|
||||
# Iterate through all possible combinations of s0, s1, s2, s3
|
||||
for s0 in s0_range:
|
||||
for s1 in s1_range:
|
||||
for s2 in s2_range:
|
||||
for s3 in s3_range:
|
||||
|
||||
# Skip impossible states
|
||||
if s2 == 2 and s1 not in s_constrained_values:
|
||||
if s1 == 2 and s0 not in s_constrained_values:
|
||||
continue
|
||||
if s4 == 2 and s3 not in s_constrained_values:
|
||||
if s3 == 2 and s2 not in s_constrained_values:
|
||||
continue
|
||||
|
||||
# Assign all possible states a tuple of values
|
||||
state_key = (s1, s2, s3, s4)
|
||||
state_key = (s0, s1, s2, s3)
|
||||
q_table[state_key] = [INITIAL_Q_VALUE] * NUM_ACTIONS
|
||||
|
||||
print(f"Total number of valid states initialized: {len(q_table)}") # debugging
|
||||
|
|
@ -48,14 +48,14 @@ def epsilon_greedy(q, s, epsilon=0.9):
|
|||
Return which direction Pacman should move to
|
||||
epsilon-greedy algorithm TBD
|
||||
"""
|
||||
a_val = max(q[s])
|
||||
a = q[s].index(a_val)
|
||||
q_max = max(q[s])
|
||||
a = q[s].index(q_max)
|
||||
|
||||
return a
|
||||
|
||||
|
||||
def take_action(s, a):
|
||||
s_new = s
|
||||
def take_action(s, a, labyrinth):
|
||||
s_new = list(s)
|
||||
if a == 0:
|
||||
s_new[0] -= 1
|
||||
if a == 1:
|
||||
|
|
@ -65,9 +65,11 @@ def take_action(s, a):
|
|||
if a == 3:
|
||||
s_new[1] -= 1
|
||||
|
||||
# Calculate fucking r
|
||||
# include if there is a point on the field
|
||||
r = 0
|
||||
|
||||
return s_new, r
|
||||
# consider if there is a point on the field
|
||||
r = 1 if labyrinth[s_new[0]][s_new[1]] == "." else 0
|
||||
# consider new distance between Pacman and Ghost
|
||||
distance = abs(s[0] - s[2]) + abs(s[1] - s[3])
|
||||
distance_new = abs(s_new[0] - s_new[2]) + abs(s_new[1] - s_new[3])
|
||||
r += distance_new - distance # adjust this value if necessary
|
||||
|
||||
return tuple(s_new), r
|
||||
Loading…
Reference in New Issue