Keep fighting

master
Ruben-FreddyLoafers 2025-11-24 21:03:19 +01:00
parent a76d2c41d3
commit ad40c248d3
2 changed files with 53 additions and 88 deletions

View File

@ -32,6 +32,10 @@ labyrinth = [
ROWS = len(labyrinth)
COLS = len(labyrinth[0])
# Q-Learning Constants
GAMMA = 0.90
ALPHA = 0.2
# Initialize game screen
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
pygame.display.set_caption("Micro-Pacman")
@ -129,9 +133,6 @@ def main():
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
q = rl.q_init()
a_opposite_direction = {0: 1, 1: 0, 2: 3, 3: 2}
gamma = 0.90
alpha = 0.2
# Game loop
running = True
@ -144,10 +145,6 @@ def main():
if event.type == pygame.QUIT:
running = False
if iter%3==0:
# Ghost moves towards Pacman
ghost.move_towards_pacman(pacman)
# Check for collisions (game over if ghost catches pacman)
if pacman.x == ghost.x and pacman.y == ghost.y:
print("Game Over! The ghost caught Pacman.")
@ -163,26 +160,27 @@ def main():
running = False
# Start of my code
s_not_terminal = True
labyrinth_copy = [list(row) for row in labyrinth] # Create proper deep copy
s_not_terminal = True
a = None
iteration = 0
max_iterations = 50 # Prevent infinite loops
while s_not_terminal and iteration < max_iterations:
iteration += 1
print("s: " + str(s))
print("q[s] before action: " + str(q[s]))
print("s: " + str(s)) # debugging
print("q[s] before action: " + str(q[s])) # debugging
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
s_new, r, labyrinth_copy = rl.take_action(s, a, labyrinth_copy)
q[s][a] += round(alpha * (r + gamma * rl.max_q(q, s_new, labyrinth) - q[s][a]), 2)
# q[s_new][a_opposite_direction[a]] += round(alpha * (r + gamma * max(q[s]) - q[s_new][a_opposite_direction[a]]), 2)
q[s][a] += ALPHA * (r + GAMMA * rl.max_q(q, s_new, labyrinth_copy) - q[s][a])
s = s_new
if all("." not in row for row in labyrinth_copy):
s_not_terminal = False
q[s][a] = 10.0
# Check for collisions (game over if ghost catches pacman)
if s[0] == s[2] and s[1] == s[3]:
@ -190,16 +188,20 @@ def main():
q[s][a] = 0.01
print("There was just a collision!!!")
print("s: " + str(s))
print("Crashed values now q[s]: " + str(q[s]))
time.sleep(0.025)
if iteration >= max_iterations:
print(f"Max iterations reached ({max_iterations}), breaking out of loop")
print(f"Max iterations reached breaking out of loop")
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
move_pacman(pacman, a)
print("NEW LOOP")
if iter%3==0:
# Ghost moves towards Pacman
ghost.move_towards_pacman(pacman)
# Draw the labyrinth, pacman, and ghost
draw_labyrinth()
@ -215,18 +217,4 @@ def main():
pygame.quit()
if __name__ == "__main__":
main()
"""
for state_key in q:
if state_key[0] == s_new[0] and state_key[1] == s_new[1]:
# Update this state's Q-values based on the current transition, but only if action is valid
if q[state_key][a] > 0: # Only update if action is not blocked
q[state_key][a] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][a]), 2)
if q[state_key][opposite_action[a]] > 0: # Only update if opposite action is not blocked
q[state_key][opposite_action[a]] += round(alpha * (r + gamma * max(q[s_new]) - q[state_key][opposite_action[a]]), 2)
print("s_new: " + str(s_new))
print("q[s] after action with manipulated a: " + str(q[s]))
print("q[s_new] after action: " + str(q[s_new]))
print()
"""
main()

View File

@ -6,6 +6,10 @@ ausweicht und somit vermeidet gefressen zu werden.
"""
import numpy as np
from collections import deque
GAMMA = 0.90
ALPHA = 0.2
def q_init():
""" Fill every possible action in every state with a small value for initialization"""
@ -68,7 +72,7 @@ def q_init():
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
return q_table
def epsilon_greedy(q, s, epsilon=0.2):
def epsilon_greedy(q, s, epsilon=0.1):
"""
Return which direction Pacman should move to using epsilon-greedy algorithm
With probability epsilon, choose a random action. Otherwise choose the greedy action.
@ -76,12 +80,13 @@ def epsilon_greedy(q, s, epsilon=0.2):
Never allows Pacman to move backwards (opposite direction).
"""
"""
q_max = max(q[s])
a = q[s].index(q_max)
return a
"""
if np.random.random() < epsilon:
# Explore: choose random action (excluding blocked actions with Q=0)
valid_actions = [i for i in range(len(q[s])) if q[s][i] > 0]
@ -98,88 +103,56 @@ def epsilon_greedy(q, s, epsilon=0.2):
return best_action
else:
return 0
"""
def bfs_distance(start, end, labyrinth):
"""
Calculate shortest path distance between two points using BFS.
Returns the distance or infinity if no path exists.
"""
from collections import deque
if start == end:
return 0
queue = deque([(start, 0)]) # (position, distance)
visited = {start}
while queue:
(x, y), dist = queue.popleft()
# Check all 4 directions
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
nx, ny = x + dx, y + dy
if (nx, ny) == end:
return round(dist + 1, 2)
if 0 <= ny < len(labyrinth) and 0 <= nx < len(labyrinth[0]):
if (nx, ny) not in visited and labyrinth[ny][nx] != "#":
visited.add((nx, ny))
queue.append(((nx, ny), dist + 1))
return float('inf') # No path found
def max_q(q, s_new, labyrinth):
"""Calculate the maximum reward for all possible actions in state s_new"""
max_reward = float('-inf')
def max_q(q, s_new, labyrinth, depth=0, max_depth=2):
"""Calculate Q-values for all possible actions in state s_new and return the maximum"""
q_max = 0.01
for a in range(4):
if q[s_new][a] > 0: # Only consider valid (non-blocked) actions
s_test = list(s_new)
s_test = tuple(list(s_new)[:2] + [s_new[2], s_new[3]]) # Keep ghost position
s_test_list = list(s_test)
if a == 0: # left
s_test[0] -= 1
s_test_list[0] -= 1
elif a == 1: # right
s_test[0] += 1
s_test_list[0] += 1
elif a == 2: # up
s_test[1] -= 1
s_test_list[1] -= 1
elif a == 3: # down
s_test[1] += 1
s_test_list[1] += 1
s_test = tuple(s_test_list)
reward = calc_reward(tuple(s_test), labyrinth)
max_reward = max(max_reward, reward)
if s_test in q and depth < max_depth:
q[s_new][a] += ALPHA * (calc_reward(s_test, labyrinth) + GAMMA * max_q(q, s_test, labyrinth, depth + 1, max_depth) - q[s_new][a])
q_max = max(q_max, q[s_new][a])
return max_reward if max_reward != float('-inf') else 0.0
return q_max
def calc_reward(s_new, labyrinth):
"""
# consider new distance between Pacman and Ghost using actual pathfinding
pacman_pos_new = (s_new[0], s_new[1])
ghost_pos = (s_new[2], s_new[3])
# distance_old = bfs_distance((s[0], s[1]), ghost_pos, labyrinth)
# distance_old = bfs_distance((s[0], s[1]), ghost_pos, labyrinth)
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
r = 0
if distance_new < 3:
r = -2
r = -3
elif distance_new == 4:
r = 0.5
r = 1.0
elif distance_new > 4:
r = 1
# Reward for cookies
r += 1.0 if labyrinth[s_new[1]][s_new[0]] == "." else -1.5
r = 2.0
"""
# efficiency experiment
r -= 0.1
r = max(r, 0.01)
# Reward for cookies
r = 1.0 if labyrinth[s_new[1]][s_new[0]] == "." else -2.0
return r
def take_action(s, a, labyrinth):
labyrinth_copy = [list(row) for row in labyrinth]
labyrinth_copy[s[1]][s[0]] = " "
# Use the labyrinth parameter (already updated from previous iterations)
s_new = list(s)
if a == 0: # left
s_new[0] -= 1
@ -190,6 +163,10 @@ def take_action(s, a, labyrinth):
if a == 3: # down
s_new[1] += 1
r = calc_reward(s_new, labyrinth)
# Mark new Pacman position as eaten (if it's a cookie)
if labyrinth[s_new[1]][s_new[0]] == ".":
labyrinth[s_new[1]][s_new[0]] = " "
return tuple(s_new), r, labyrinth_copy
r = calc_reward(tuple(s_new), labyrinth)
return tuple(s_new), r, labyrinth