tried a couple things out; Balancing reward system
parent
24714fca0e
commit
ee04e00627
|
|
@ -125,6 +125,9 @@ def main():
|
|||
# Initialize Pacman and Ghost positions
|
||||
pacman = Pacman(1, 1)
|
||||
ghost = Ghost(COLS - 2, ROWS - 2)
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||
a_prev = 4
|
||||
q = rl.q_init()
|
||||
gamma = 0.9
|
||||
alpha = 0.8
|
||||
|
|
@ -140,17 +143,6 @@ def main():
|
|||
if event.type == pygame.QUIT:
|
||||
running = False
|
||||
|
||||
# Handle Pacman movement
|
||||
keys = pygame.key.get_pressed()
|
||||
if keys[pygame.K_LEFT]:
|
||||
pacman.move(-1, 0)
|
||||
if keys[pygame.K_RIGHT]:
|
||||
pacman.move(1, 0)
|
||||
if keys[pygame.K_UP]:
|
||||
pacman.move(0, -1)
|
||||
if keys[pygame.K_DOWN]:
|
||||
pacman.move(0, 1)
|
||||
|
||||
if iter%3==0:
|
||||
# Ghost moves towards Pacman
|
||||
ghost.move_towards_pacman(pacman)
|
||||
|
|
@ -170,20 +162,24 @@ def main():
|
|||
running = False
|
||||
|
||||
# Start of my code
|
||||
|
||||
s = (pacman.x, pacman.y, ghost.x, ghost.y) # as a tuple so the state becomes hashable
|
||||
|
||||
#s_not_terminal = True
|
||||
# s_not_terminal = True
|
||||
# while s_not_terminal:
|
||||
a = rl.epsilon_greedy(q, s) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
print("s: " + str(s))
|
||||
print("q[s] before action: " + str(q[s]))
|
||||
|
||||
|
||||
a = rl.epsilon_greedy(q, s, a_prev) # 0 = Left; 1 = Right ; 2 = Up ; 3 = Down
|
||||
s_new, r = rl.take_action(s, a, labyrinth)
|
||||
move_pacman(pacman, a)
|
||||
print("state: " + str(s_new) + " r: " + str(r))
|
||||
|
||||
q[s][a] += round(alpha * (r + gamma * max(q[s_new]) - q[s][a]), 2)
|
||||
print(q[s])
|
||||
print("s_new: " + str(s_new))
|
||||
print("q[s] after action with manipulated a: " + str(q[s]))
|
||||
print("q[s_new] after action: " + str(q[s_new]))
|
||||
print()
|
||||
|
||||
s = s_new
|
||||
a_prev = a
|
||||
time.sleep(0.5)
|
||||
|
||||
#gamma *= gamma
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ def q_init():
|
|||
|
||||
# Configuration
|
||||
NUM_ACTIONS = 4
|
||||
INITIAL_Q_VALUE = 1.0 # Small value for initialization
|
||||
INITIAL_Q_VALUE = 2.0 # Small value for initialization
|
||||
|
||||
# Labyrinth layout
|
||||
labyrinth = [
|
||||
|
|
@ -70,18 +70,43 @@ def q_init():
|
|||
# print(list(q_table.items())[:5]) # Uncomment to see the first 5 entries
|
||||
return q_table
|
||||
|
||||
def epsilon_greedy(q, s, epsilon=0.2):
|
||||
def epsilon_greedy(q, s, a_prev, epsilon=0.2):
|
||||
"""
|
||||
Return which direction Pacman should move to using epsilon-greedy algorithm
|
||||
With probability epsilon, choose a random action. Otherwise choose the greedy action.
|
||||
If multiple actions have the same max Q-value, prefer actions different from a_prev.
|
||||
Never allows Pacman to move backwards (opposite direction).
|
||||
"""
|
||||
"""
|
||||
|
||||
opposite_action = {0: 1, 1: 0, 2: 3, 3: 2}
|
||||
|
||||
q_max = max(q[s])
|
||||
a = q[s].index(q_max)
|
||||
|
||||
return a
|
||||
"""
|
||||
# Find all actions with the maximum Q-value
|
||||
max_actions = [a for a in range(4) if q[s][a] == q_max]
|
||||
|
||||
# Exclude the opposite action (going backwards)
|
||||
if a_prev in opposite_action:
|
||||
backward_action = opposite_action[a_prev]
|
||||
if backward_action in max_actions:
|
||||
max_actions.remove(backward_action)
|
||||
|
||||
# If no actions left after removing backward action, allow it (no choice)
|
||||
if not max_actions:
|
||||
max_actions = [a for a in range(4) if q[s][a] == q_max]
|
||||
if a_prev in opposite_action:
|
||||
backward_action = opposite_action[a_prev]
|
||||
if backward_action in max_actions:
|
||||
max_actions.remove(backward_action)
|
||||
|
||||
# Return the first valid action
|
||||
a = max_actions[0] if max_actions else 0
|
||||
"""
|
||||
return a
|
||||
|
||||
"""
|
||||
if np.random.random() < epsilon:
|
||||
# Explore: choose random action (excluding blocked actions with Q=0)
|
||||
valid_actions = [i for i in range(len(q[s])) if q[s][i] > 0]
|
||||
|
|
@ -98,6 +123,11 @@ def epsilon_greedy(q, s, epsilon=0.2):
|
|||
return best_action
|
||||
else:
|
||||
return 0
|
||||
"""
|
||||
|
||||
|
||||
def max_q(q, s_new):
|
||||
pass
|
||||
|
||||
|
||||
def bfs_distance(start, end, labyrinth):
|
||||
|
|
@ -143,20 +173,21 @@ def take_action(s, a, labyrinth):
|
|||
s_new[1] += 1
|
||||
|
||||
# consider if there is a point on the field
|
||||
r = 3 if labyrinth[s_new[1]][s_new[0]] == "." else -1
|
||||
r = 2.0 if labyrinth[s_new[1]][s_new[0]] == "." else -5.0
|
||||
|
||||
# consider new distance between Pacman and Ghost using actual pathfinding
|
||||
pacman_pos = (s[0], s[1])
|
||||
ghost_pos = (s[2], s[3])
|
||||
pacman_pos_new = (s_new[0], s_new[1])
|
||||
|
||||
distance = bfs_distance(pacman_pos, ghost_pos, labyrinth)
|
||||
distance_new = bfs_distance(pacman_pos_new, ghost_pos, labyrinth)
|
||||
|
||||
# Reward for increasing distance from ghost (moving away is good)
|
||||
if distance_new > distance:
|
||||
r += 0.5 # Bonus for moving away
|
||||
elif distance_new < distance:
|
||||
r -= 1.0 # Penalty for moving closer
|
||||
# Reward based on distance from ghost (closer distance = worse reward)
|
||||
if distance_new >= 4:
|
||||
r += 2.0 # Good reward for being far away
|
||||
elif distance_new >= 2:
|
||||
r += 1.0 # Small reward for being moderately far
|
||||
elif distance_new == 1:
|
||||
r -= 10.0 # Large penalty for being adjacent to ghost
|
||||
|
||||
return tuple(s_new), r
|
||||
Loading…
Reference in New Issue