""" Schreibe einen genetischen Algorithmus, der die Parameter (a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert, dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst gut angenähert wird. Nutze dazu den quadratischen Fehler (oder alternativ die Fläche zwischen der e-Funktion und dem Polynom). Zeichne die Lösung und vergleiche die Koeffizienten mit denen der Taylor-Reihe um 0. """ import numpy as np import random import time import utils POPULATION_SIZE = 10 SELECTION_SIZE = (POPULATION_SIZE * 7) // 10 # 70% of population, rounded down for selection XOVER_PAIR_SIZE = (POPULATION_SIZE - SELECTION_SIZE) XOVER_POINT = 3 # 4th position MUTATION_BITS = POPULATION_SIZE // 2 fitness = 2 fitness_arr = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1] gray_pop = [] # 32 Bit-Binary as String bin_pop = [] # 32 Bit-Binary as String bin_pop_params = [] # Arrays with 4 Binary values of 8s new_pop = [] # 32 Bit Gray-Code as String def generate_random_population(num=POPULATION_SIZE): """ Puts random 32 Bit binary strings into 4 * 8 Bit long params. """ # Generate new population for _ in range(num): gray = format(random.getrandbits(32), '032b') gray_pop.append(gray) bin_str = utils.gray_to_bin(gray) bin_pop.append(bin_str) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_params.append(params) return bin_pop_params def quadratic_error(original_fn, approx_fn, n): error = 0.0 for i in range(-(n // 2), (n // 2) + 1): error += (original_fn(i) - approx_fn(i))**2 return error def eval_fitness(bin_pop_values): """ Returns an array with fitness value of every individual in a population. """ fitness_arr = [] for params in bin_pop_values: # Convert binary string to parameters for bin_values a, b, c, d = [utils.bin_to_param(param) for param in params] # assign params to batch of population # Create polynomial function with current parameters approx = lambda x: a*x**3 + b*x**2 + c*x + d e_func = lambda x: np.e**x quad_error = quadratic_error(e_func, approx, 3) # the bigger the error, the worse the fitness inverse_fitness = 1 / quad_error # using inverse to find small errors easier inverse_fitness = round(inverse_fitness, 2) print("Fitness: " + str(inverse_fitness)) # debugging fitness_arr.append(inverse_fitness) # save fitness return fitness_arr def select(fitness_arr): gray_pop_copy = gray_pop.copy() # copy of population fitness_arr_copy = fitness_arr.copy() # copy of fitness array selected_pop = [] while len(selected_pop) < SELECTION_SIZE: sum_of_fitness = sum(fitness_arr_copy) if sum_of_fitness == 0: break # Roulette logic roulette_num = random.random() cumulative_p = 0 for i, fitness in enumerate(fitness_arr_copy): cumulative_p += fitness / sum_of_fitness if roulette_num < cumulative_p: # Add the selected individual selected_pop.append(gray_pop_copy[i]) # Remove selected individual and their fitness gray_pop_copy.pop(i) fitness_arr_copy.pop(i) break return selected_pop def xover(population): """Performs crossover on pairs of individuals from population.""" offspring = [] # Randomly shuffle the population to avoid bias population_copy = population.copy() random.shuffle(population_copy) # Process pairs i = 0 while i < XOVER_PAIR_SIZE: parent_a = population_copy[i] parent_b = population_copy[i + 1] # Create two new offspring by swapping parts at random xover point offspring_a = parent_a[:XOVER_POINT] + parent_b[XOVER_POINT:] offspring_b = parent_b[:XOVER_POINT] + parent_a[XOVER_POINT:] offspring.extend([offspring_a, offspring_b]) i += 2 # Move to next pair if len(offspring) > XOVER_PAIR_SIZE: offspring = offspring[:XOVER_PAIR_SIZE] return offspring def mutate(population, mutation_rate): """Mutate random bits in the population with given mutation rate""" for _ in range(mutation_rate): # Select random individual and convert to list for efficient modification random_num = random.randrange(POPULATION_SIZE) bits = list(population[random_num]) # Flip random bit bit_pos = random.randrange(32) bits[bit_pos] = '1' if bits[bit_pos] == '0' else '0' # Convert back to string and update population population[random_num] = ''.join(bits) # will work because lists are passed by reference bin_pop_values = generate_random_population(POPULATION_SIZE) print("Working...") iteration = 0 # debugging while not np.any((np.array(fitness_arr)) > 200): # Continue while any fitness value is > 1 print("\nIteration: " + str(iteration)) # debugging # Evaluate fitness fitness_arr = eval_fitness(bin_pop_values) # Selection new_pop = select(fitness_arr) # assigns # Crossover offspring = xover(gray_pop) new_pop.extend(offspring) # Add offspring to population # Mutation mutate(new_pop, MUTATION_BITS) # Update populations for next generation gray_pop = new_pop.copy() bin_pop_values = [] for gray_bin_string in gray_pop: bin_str = utils.gray_to_bin(gray_bin_string) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_values.append(params) # time.sleep(0.5) # debugging iteration += 1 # debugging max_fitness_index = np.argmax(np.array(fitness_arr)) a, b, c, d = [utils.bin_to_param(param) for param in bin_pop_values[max_fitness_index]] print("Chosen value: " + str(fitness_arr[max_fitness_index])) # debugging print("at index: " + str(max_fitness_index)) # debugging print("a: " + str(a) + "; b: " + str(b) + "; c: " + str(c) + "; d: " + str(d) ) utils.plot_graph(a, b, c, d)