""" Schreibe einen genetischen Algorithmus, der die Parameter (a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert, dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst gut angenähert wird. Nutze dazu den quadratischen Fehler (oder alternativ die Fläche zwischen der e-Funktion und dem Polynom). Zeichne die Lösung und vergleiche die Koeffizienten mit denen der Taylor-Reihe um 0. """ import numpy as np import random import struct import time import utils # import matplotlib.pyplot as plt POPULATION_SIZE = 10 SELECTION_SIZE = (POPULATION_SIZE * 7) // 10 # 70% of population, rounded down for selection XOVER_PAIR_SIZE = (POPULATION_SIZE - SELECTION_SIZE) // 2 # pairs needed for crossover XOVER_POINT = 3 # 4th position MUTATION_BITS = POPULATION_SIZE * 1 fitness = 1 grey_pop = [] bin_pop = [] # 32 Bit Binary bin_pop_params = [] new_pop = [] # 32 Bit Grey-Code as String e_func = lambda x: np.e**x def generate_random_population(num=POPULATION_SIZE): """ Puts random 32 Bit binary strings into 4 * 8 Bit long params. """ # Generate new population for _ in range(num): grey = format(random.getrandbits(32), '32b') grey_pop.append(grey) bin_str = utils.grey_to_bin(grey) bin_pop.append(bin_str) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_params.append(params) return bin_pop_params def quadratic_error(original_fn, approx_fn, n): error = 0.0 for i in range(-(n // 2), (n // 2) + 1): error += (original_fn(i) - approx_fn(i))**2 return error def eval_fitness(bin_pop_values): """ Returns an array with fitness value of every individual in a population. """ fitness_arr = [] for params in bin_pop_values: # Convert binary string to parameters for bin_values a, b, c, d = [utils.bin_to_param(param) for param in params] # assign params to batch of population # Create polynomial function with current parameters approx = lambda x: a*x**3 + b*x**2 + c*x + d fitness = quadratic_error(e_func, approx, 6) print(fitness) # debugging fitness_arr.append(fitness) # save fitness # save params # already saved in grey_pop return fitness_arr def select(population, fitness_arr): sum_of_fitness = sum(fitness_arr) while len(population) < SELECTION_SIZE: # Roulette logic roulette_num = random.random() is_chosen = False while not is_chosen: cumulative_p = 0 # Track cumulative probability for i, fitness in enumerate(fitness_arr): cumulative_p += fitness / sum_of_fitness if roulette_num < cumulative_p: # Add the 32 Bit individual in grey code to population population.append(grey_pop[i]) # Calc new sum of fitness fitness_arr.pop(i) sum_of_fitness = sum(fitness_arr) is_chosen = True # break while loop break # break for loop return population def xover(population, xover_rate=XOVER_PAIR_SIZE): """Performs crossover on pairs of individuals from population.""" offspring = [] # Process pairs while we have enough individuals and haven't reached xover_rate pair_count = 0 i = 0 while i < len(population) - 1 and pair_count < xover_rate: parent_a = population[i] parent_b = population[i + 1] # Create two new offspring by swapping parts at XOVER_POINT offspring_a = parent_a[:XOVER_POINT] + parent_b[XOVER_POINT:] offspring_b = parent_b[:XOVER_POINT] + parent_a[XOVER_POINT:] offspring.extend([offspring_a, offspring_b]) pair_count += 1 i += 2 # Move to next pair return offspring def mutate(population, mutation_rate): """Mutate random bits in the population with given mutation rate""" for _ in range(mutation_rate): # Select random individual and convert to list for efficient modification random_num = random.randrange(POPULATION_SIZE) bits = list(population[random_num]) # Flip random bit bit_pos = random.randrange(32) bits[bit_pos] = '1' if bits[bit_pos] == '0' else '0' # Convert back to string and update population population[random_num] = ''.join(bits) # will work because lists are passed by reference def main(): bin_pop_values = generate_random_population(POPULATION_SIZE) print(bin_pop_values) while fitness > 0.01: # Evaluate fitness fitness_arr = eval_fitness(bin_pop_values) # Selection new_pop = select(new_pop, fitness_arr) # Alters new_pop print(new_pop) time.sleep(1) """# Crossover offspring = xover(new_pop, XOVER_PAIR_SIZE) new_pop.extend(offspring) # .extend needed # Mutation mutate(new_pop, MUTATION_BITS) # Update populations for next generation grey_pop = new_pop.copy() bin_pop_values = [] for grey_bin_string in grey_pop: bin_str = utils.grey_to_bin(grey_bin_string) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_values.append(params)""" return 0 if __name__ == "__main__": main()