""" Schreibe einen genetischen Algorithmus, der die Parameter (a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert, dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst gut angenähert wird. Nutze dazu den quadratischen Fehler (oder alternativ die Fläche zwischen der e-Funktion und dem Polynom). Zeichne die Lösung und vergleiche die Koeffizienten mit denen der Taylor-Reihe um 0. """ import numpy as np import random import struct import time # import matplotlib.pyplot as plt def generate_random_population(): pop_grey = [format(random.getrandbits(32), '32b') for i in range(10)] pop_bin = grey_to_bin(pop_grey) a, b, c, d = pop_bin[0:7], pop_bin[8:15], pop_bin[16:23], pop_bin[24:31] return [a, b, c, d] def grey_to_bin(gray): """Convert Gray code to binary, operating on the integer value directly""" num = int(gray, 2) # Convert string to integer mask = num while mask != 0: mask >>= 1 num ^= mask return format(num, f'0{len(gray)}b') # Convert back to binary string with same length def bin_to_grey(binary): """Convert binary to Gray code using XOR with right shift""" num = int(binary, 2) # Convert string to integer gray = num ^ (num >> 1) # Gray code formula: G = B ^ (B >> 1) return format(gray, f'0{len(binary)}b') # Convert back to binary string with same length def bin_to_param(binary, q_min = 0.0, q_max = 10.0): """Convert binary string to float parameter in range [q_min, q_max]""" val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float # Scale to range [q_min, q_max] q = q_min + ((q_max - q_min) / (2**len(binary))) * val return q def quadratic_error(original_fn, approx_fn, n): error = 0.0 for i in range(-(n // 2), (n // 2) + 1): error += (original_fn(i) - approx_fn(i))**2 return error def e_fn_approx(a, b, c, d, x = 1): return a*x**3 + b*x**2 + c*x + d def fuck_that_shit_up(): bin_values = generate_random_population() # Convert binary string to parameters for bin_values a, b, c, d = [bin_to_param(bin) for bin in bin_values] e_func = lambda x: np.e**x fixed_approx = lambda x: e_fn_approx(a, b, c, d, x) fitness = quadratic_error(e_func, fixed_approx, 6) while fitness > 0.01: # calc fitness fitness = quadratic_error(e_func, fixed_approx, 6) print(fitness) time.sleep(1) # selection # crossover # mutation # neue population return 0 fuck_that_shit_up() # b = format(random.getrandbits(32), '32b') # print(quadratic_error(e_func, fixed_approx, 6)) # hopefully works