""" Schreibe einen genetischen Algorithmus, der die Parameter (a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert, dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst gut angenähert wird. Nutze dazu den quadratischen Fehler (oder alternativ die Fläche zwischen der e-Funktion und dem Polynom). Zeichne die Lösung und vergleiche die Koeffizienten mit denen der Taylor-Reihe um 0. """ import numpy as np import random import struct import time import utils # import matplotlib.pyplot as plt POPULATION_SIZE = 10 SELECTION_SIZE = (POPULATION_SIZE * 7) // 10 # 70% of population, rounded down for selection XOVER_PAIR_SIZE = (POPULATION_SIZE - SELECTION_SIZE) XOVER_POINT = 3 # 4th position MUTATION_BITS = POPULATION_SIZE // 2 fitness = 2 fitness_arr = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1] gray_pop = [] # 32 Bit-Binary as String bin_pop = [] # 32 Bit-Binary as String bin_pop_params = [] # Arrays with 4 Binary values of 8s new_pop = [] # 32 Bit Gray-Code as String e_func = lambda x: np.e**x def generate_random_population(num=POPULATION_SIZE): """ Puts random 32 Bit binary strings into 4 * 8 Bit long params. """ # Generate new population for _ in range(num): gray = format(random.getrandbits(32), '032b') gray_pop.append(gray) bin_str = utils.gray_to_bin(gray) bin_pop.append(bin_str) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_params.append(params) return bin_pop_params def quadratic_error(original_fn, approx_fn, n): error = 0.0 for i in range(-(n // 2), (n // 2) + 1): error += (original_fn(i) - approx_fn(i))**2 return error def eval_fitness(bin_pop_values): """ Returns an array with fitness value of every individual in a population. """ fitness_arr = [] for params in bin_pop_values: # Convert binary string to parameters for bin_values a, b, c, d = [utils.bin_to_param(param) for param in params] # assign params to batch of population # Create polynomial function with current parameters approx = lambda x: a*x**3 + b*x**2 + c*x + d quad_error = quadratic_error(e_func, approx, 6) inverse_fitness = 1 / quad_error # the bigger the error, the worse the fitness print("Fitness: " + str(inverse_fitness)) # debugging fitness_arr.append(inverse_fitness) # save fitness # save params # already saved in gray_pop return fitness_arr def select(fitness_arr): fitness_arr_copy = fitness_arr.copy() sum_of_fitness = sum(fitness_arr_copy) selected_pop = [] while len(selected_pop) < SELECTION_SIZE: # Roulette logic roulette_num = random.random() is_chosen = False while not is_chosen: cumulative_p = 0 # Track cumulative probability for i, fitness in enumerate(fitness_arr_copy): cumulative_p += fitness / sum_of_fitness if roulette_num < cumulative_p: # Add the 32 Bit individual in gray code to population selected_pop.append(gray_pop[i]) # Calc new sum of fitness fitness_arr_copy.pop(i) sum_of_fitness = sum(fitness_arr_copy) is_chosen = True # break while loop break # break for loop return selected_pop # TODO: xover the old population not the new one def xover(population): """Performs crossover on pairs of individuals from population.""" offspring = [] # Process pairs while we have enough individuals and haven't reached xover_rate i = 0 while i < len(population) - 1 and len(population) + len(offspring) < 10: parent_a = population[i] parent_b = population[i + 1] # Create two new offspring by swapping parts at XOVER_POINT offspring_a = parent_a[:XOVER_POINT] + parent_b[XOVER_POINT:] offspring_b = parent_b[:XOVER_POINT] + parent_a[XOVER_POINT:] offspring.extend([offspring_a, offspring_b]) i += 2 # Move to next pair if len(offspring) > 3: offspring.pop() return offspring def mutate(population, mutation_rate): """Mutate random bits in the population with given mutation rate""" for _ in range(mutation_rate): # Select random individual and convert to list for efficient modification random_num = random.randrange(POPULATION_SIZE) bits = list(population[random_num]) # Flip random bit bit_pos = random.randrange(32) bits[bit_pos] = '1' if bits[bit_pos] == '0' else '0' # Convert back to string and update population population[random_num] = ''.join(bits) # will work because lists are passed by reference def main(): global gray_pop, bin_pop, bin_pop_params, new_pop, fitness, fitness_arr bin_pop_values = generate_random_population(POPULATION_SIZE) iteration = 0 while not np.all((1 / np.array(fitness_arr)) <= 1): # Continue while any fitness value is > 1 print("Iteration: " + str(iteration)) # debugging # Evaluate fitness fitness_arr = eval_fitness(bin_pop_values) # Selection new_pop = select(fitness_arr) # assigns # Crossover offspring = xover(new_pop) new_pop.extend(offspring) # Add offspring to population # Mutation mutate(new_pop, MUTATION_BITS) # Update populations for next generation gray_pop = new_pop.copy() bin_pop_values = [] for gray_bin_string in gray_pop: bin_str = utils.gray_to_bin(gray_bin_string) params = [bin_str[i:i+7] for i in range(0, 31, 8)] bin_pop_values.append(params) # print(new_pop) # time.sleep(0.5) iteration += 1 return 0 if __name__ == "__main__": main() print("found that shit")