compatibility of new UI with FHN implemented

pull/4/head
2211567 2025-06-14 14:36:31 +02:00
parent d5ea440656
commit 884e87383c
5 changed files with 76 additions and 69 deletions

View File

@ -1,5 +1,7 @@
include("../src/utils/constants.jl")
include("../src/fhn_solver.jl")
#include("../src/gray_scott_solver.jl")
include("../src/visualization.jl")
include("../src/gray_scott_solver.jl")
using Observables
using GLMakie
@ -7,6 +9,8 @@ using GLMakie
using .Constants
using .Visualization
"""
# GSParams
N = 128
dx = 1.0
Du, Dv = Observable(0.16), Observable(0.08)
@ -18,11 +22,32 @@ param_observables = (
F=F,
k=k,
)
"""
params_obs = Observable(GSParams(N, dx, Du[], Dv[], F[], k[]))
# FHNParams
N = 128
dx = 1.0
Du, Dv = Observable(0.016), Observable(0.1)
ϵ, a, b = Observable(0.1), Observable(0.5), Observable(0.9)
param_observables = (
Du=Du,
Dv=Dv,
ϵ=ϵ,
a=a,
b=b
)
#params_obs = Observable(GSParams(N, dx, Du[], Dv[], F[], k[]))
params_obs = Observable(Constants.FHNParams(N=N, dx=dx, Du=Du[], Dv=Dv[], ϵ=ϵ[], a=a[], b=b[]))
"""
lift(Du, Dv, F, k) do u, v, f, ki
params_obs[] = GSParams(N, dx, u, v, f, ki)
params_obs[] = GSParams(N, dx, u, v, f, ki)
end
"""
lift(Du, Dv, ϵ, a, b) do d_u, d_v, eps, aa, bb
params_obs[] = Constants.FHNParams(N=N, dx=dx, Du=d_u, Dv=d_v, ϵ=eps, a=aa, b=bb)
end
U = ones(N, N)

View File

@ -1,13 +0,0 @@
include("../src/AnimalFurFHN.jl") # this loads the module code
using .AnimalFurFHN
# include optional visualizer only if needed:
include("../src/visualization.jl")
using .Visualization
N = 128
tspan = (0.0, 1000.0)
sol = AnimalFurFHN.run_simulation(tspan, N)
Visualization.step_through_solution(sol, N)

View File

@ -1,7 +1,11 @@
include("utils/laplacian.jl")
using DifferentialEquations
using Random
using Observables
using ..Constants
using .Laplacian
using .Constants
"""
fhn(du, u, p:FHNParams, t:)
@ -18,7 +22,7 @@ using .Constants
# Returns
- `du`: calculated derivatives put back into the du array
"""
function fhn!(du, u, p::FHNParams, t=0)
function fhn!(du, u, p::FHNParams, t)
u_mat = reshape(u[1:p.N^2], p.N, p.N) # activation variable
v_mat = reshape(u[p.N^2+1:end], p.N, p.N) # deactivation variable
@ -31,25 +35,31 @@ function fhn!(du, u, p::FHNParams, t=0)
du .= vcat(vec(fu), vec(fv))
end
"""
run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
function step!(U, V, params_obs::Observable; dx=1)
p = params_obs[]
solving the ODE and modelling it after FHN
# Flatten initial condition (activation u, recovery v)
u0 = vec(U)
v0 = vec(V)
u_init = vcat(u0, v0)
# Arguments
- `tspan`: tuple of two Float64's representing start and end times for simulation
- `N`: size of the N×N grid
# Define one integration step using your fhn! function
prob = ODEProblem((du, u, p, t) -> fhn!(du, u, p, t), u_init, (0.0, 0.1), p)
sol = solve(prob, Tsit5(); dt=0.1, save_start=false, saveat=10.0)
# Returns
- `sol`: solved differential equation (ODE)
"""
function run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
# Initial conditions
# params, y0 = zebra_conditions(N) # tspan of ~3500 enough
params, y0 = zebra_conditions(N)
# Extract solution and reshape
u_new = reshape(sol[end][1:p.N^2], p.N, p.N)
v_new = reshape(sol[end][p.N^2+1:end], p.N, p.N)
prob = ODEProblem(fhn!, y0, tspan, params)
sol = solve(prob, BS3(), saveat=50.0) # You can try `Rosenbrock23()` too
# Update matrices in-place
U .= u_new
V .= v_new
return sol
return U
end
function multi_step!(state, n_steps, heat_obs::Observable, params_obs::Observable; dx=1)
for _ in 1:n_steps
heat_obs[] = step!(state[1], state[2], params_obs; dx=1)
end
end

View File

@ -1,6 +1,8 @@
include("utils/constants.jl")
include("utils/laplacian.jl")
using Observables
using .Constants
using .Laplacian

View File

@ -1,46 +1,29 @@
module Visualization
include("gray_scott_solver.jl")
#include("gray_scott_solver.jl")
include("fhn_solver.jl")
using GLMakie, Observables, Makie
"""
step_through_solution(sol::SolutionType, N::Int)
Function for visualization for the output of run_simulation
# Arguments
- `sol`: computed differential equation by run_simulation
- `N`: size of the N×N grid
# Returns
- ``: Displays created figure
"""
function step_through_solution(sol, N::Int)
fig = Figure(resolution=(600, 600))
ax = Axis(fig[1, 1])
slider = Slider(fig[2, 1], range=1:length(sol), startvalue=1)
# Initialize heatmap with first time step
u0 = reshape(sol[1][1:N^2], N, N)
heat_obs = Observable(u0)
hmap = heatmap!(ax, heat_obs, colormap=:RdGy)
# Update heatmap on slider movement
on(slider.value) do i
u = reshape(sol[i][1:N^2], N, N)
heat_obs[] = u
end
display(fig)
end
function coord_to_index(x, y, N)
ix = clamp(round(Int, x), 1, N)
iy = clamp(round(Int, y), 1, N)
return ix, iy
end
"""
reset(U, V, heat_obs)
Resets heatmap to original state by replacing each cell.
Currently only places a square in the center
# Arguments
- `U`: Matrix filled with ones
- `V`: Empty matrix filled with zeros
- `heat_obs`: Heatmap observable
# Returns
- ``: resetted heatmap observable
"""
function reset!(U, V, heat_obs)
U .= 1.0
V .= 0.0
@ -77,7 +60,7 @@ function build_ui(U, V, param_obs_map::NamedTuple, params_obs, heat_obs)
stepsize = Observable(30)
spoint = select_point(ax.scene)
# # Controls
# Controls
fig[2, 1] = buttongrid = GridLayout(ax.scene, tellwidth=false)
btn_step = Button(buttongrid[1, 1], width=50, label="Step")
btn_start = Button(buttongrid[1, 2], width=50, label=run_label)
@ -162,5 +145,5 @@ function build_ui(U, V, param_obs_map::NamedTuple, params_obs, heat_obs)
return fig
end
export step_through_solution, build_ui
export build_ui
end