made docs foldable

pull/2/head
2211567 2025-05-31 13:51:23 +02:00
parent 3fcfa16570
commit aec9b33b38
4 changed files with 30 additions and 30 deletions

View File

@ -5,7 +5,7 @@ include("../src/visualization.jl")
using .Visualization
N = 100
tspan = (0.0, 100.0)
tspan = (0.0, 1000.0)
sol = AnimalFurFHN.run_simulation(tspan, N)

View File

@ -1,16 +1,16 @@
"""
laplacian(U::Matrix{Float64}, N::Int, h::Float64)
Computes the discrete 2D Laplacian of a matrix `U` using a 5-point stencil
and circular boundary conditions.
Computes the discrete 2D Laplacian of a matrix `U` using a 5-point stencil
and circular boundary conditions.
# Arguments
- `U::Matrix{Float64}`: The input 2D matrix representing the field or image.
- `N::Int`: Integer
- `h::Float64`: The spatial step size or grid spacing between points in the discretization.
# Arguments
- `U::Matrix{Float64}`: The input 2D matrix representing the field or image.
- `N::Int`: Integer
- `h::Float64`: The spatial step size or grid spacing between points in the discretization.
# Returns
- `Vector{Float64}`: A flattened (vectorized) representation of the approximated Laplacian values for each element in `U`. The boundary conditions are handled circularly.
# Returns
- `Vector{Float64}`: A flattened (vectorized) representation of the approximated Laplacian values for each element in `U`. The boundary conditions are handled circularly.
"""
function laplacian(U::Matrix{Float64}, N::Int, h::Float64)
# shifts matrices and sums them up

View File

@ -5,17 +5,17 @@ using .Constants
"""
fhn(du, u, p:FHNParams, t:)
Implements the spatial dynamics of FitzHugh-Nagumo (fhn). Designed to be
within a larger numerical solver of partial differential equations.
Implements the spatial dynamics of FitzHugh-Nagumo (fhn). Designed to be
within a larger numerical solver of partial differential equations.
# Arguments
- `du`: output argument which stores the calculated derivatives
- `u`: input vector containing the current state of the system at time t
- `p`: holds all the fixed parameters of the FHN model
- `t`: current time
# Arguments
- `du`: output argument which stores the calculated derivatives
- `u`: input vector containing the current state of the system at time t
- `p`: holds all the fixed parameters of the FHN model
- `t`: current time
# Returns
- `du`: calculated derivatives put back into the du array
# Returns
- `du`: calculated derivatives put back into the du array
"""
function fhn!(du, u, p::FHNParams, t = 0)
u_mat = reshape(u[1:p.N^2], p.N, p.N) # activation variable
@ -33,14 +33,14 @@ end
"""
run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
solving the ODE and modelling it after FHN
solving the ODE and modelling it after FHN
# Arguments
- `tspan`: tuple of two Float64's representing start and end times for simulation
- `N`: size of the N×N grid
# Arguments
- `tspan`: tuple of two Float64's representing start and end times for simulation
- `N`: size of the N×N grid
# Returns
- `sol`: solved differential equation (ODE)
# Returns
- `sol`: solved differential equation (ODE)
"""
function run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
# Turing-spot parameters

View File

@ -4,14 +4,14 @@ using GLMakie
"""
step_through_solution(sol::SolutionType, N::Int)
Function for visualization for the output of run_simulation
Function for visualization for the output of run_simulation
# Arguments
- `sol`: computed differential equation by run_simulation
- `N`: size of the N×N grid
# Arguments
- `sol`: computed differential equation by run_simulation
- `N`: size of the N×N grid
# Returns
- ``: Displays created figure
# Returns
- ``: Displays created figure
"""
function step_through_solution(sol, N::Int)
fig = Figure(resolution=(600, 600))