created utils file; rm two files

pull/3/head
2211567 2025-06-13 14:08:05 +02:00
parent f39c85a0ad
commit c98b5f0fca
7 changed files with 24 additions and 376 deletions

View File

@ -1,6 +1,6 @@
include("../src/gray_scott_solver.jl")
include("../src/visualization.jl")
include("../src/constants.jl")
include("../src/utils/constants.jl")
using Observables

View File

@ -1,208 +0,0 @@
using GLMakie, Observables
include("../src/constants.jl")
using .Constants
include("../src/visualization.jl")
using .Visualization
# # Gray Scott Model Parameters
# Parameters and initial conditions
N = 128
dx = 1.0
# diffusion rates of substance 'u' and 'v'
Du, Dv = Observable(0.16), Observable(0.08)
# feed rate of 'u' and kill rate of 'v'
F, k = Observable(0.060), Observable(0.062)
dt = 1.0
params_obs = Observable(GSParams(N, dx, Du[], Dv[], F[], k[]))
# # GUI Parameters
run_label = Observable{String}("Run")
stepsize = Observable{Int}(30)
function update_params!(params_obs::Observable, u, v, feed, kill)
old = params_obs[]
params_obs[] = GSParams(old.N, old.dx, u, v, feed, kill)
end
# Whenever a value gets changed via the textbox, update params object to reflect changes in simulation
lift(Du, Dv, F, k) do u, v, F, k
update_params!(params_obs, u, v, F, k)
end
U = ones(N, N)
V = zeros(N, N)
center = N ÷ 2
radius = 10
# set a cube in the center with starting concentrations for 'u' and 'v'
U[center-radius:center+radius, center-radius:center+radius] .= 0.50
V[center-radius:center+radius, center-radius:center+radius] .= 0.25
# Observable holding current U for heatmap
heat_obs = Observable(U)
function laplacian5(f)
h2 = dx^2
left = f[2:end-1, 1:end-2]
right = f[2:end-1, 3:end]
down = f[3:end, 2:end-1]
up = f[1:end-2, 2:end-1]
center = f[2:end-1, 2:end-1]
return (left .+ right .+ down .+ up .- 4 .* center) ./ h2
end
function step!(U, V, params_obs::Observable)
lap_u = laplacian5(U)
lap_v = laplacian5(V)
diff_u = params_obs[].Du
diff_v = params_obs[].Dv
feed_u = params_obs[].F
kill_v = params_obs[].k
u = U[2:end-1, 2:end-1]
v = V[2:end-1, 2:end-1]
uvv = u .* v .* v
u_new = u .+ (diff_u .* lap_u .- uvv .+ feed_u .* (1 .- u))
v_new = v .+ (diff_v .* lap_v .+ uvv .- (feed_u .+ kill_v) .* v)
# Update with new values
U[2:end-1, 2:end-1] .= u_new
V[2:end-1, 2:end-1] .= v_new
# Periodic boundary conditions
U[1, :] .= U[end-1, :]
U[end, :] .= U[2, :]
U[:, 1] .= U[:, end-1]
U[:, end] .= U[:, 2]
V[1, :] .= V[end-1, :]
V[end, :] .= V[2, :]
V[:, 1] .= V[:, end-1]
V[:, end] .= V[:, 2]
# Update heatmap observable
return U
end
function multi_step!(state, n_steps)
for _ in 1:n_steps
heat_obs[] = step!(state[1], state[2], params_obs)
end
end
# Build GUI
fig = Figure(size=(600, 600))
gh = GridLayout(fig[1, 1])
ax = Axis(gh[1, 1])
hm = Makie.heatmap!(ax, heat_obs, colormap=:viridis)
Makie.deactivate_interaction!(ax, :rectanglezoom)
ax.aspect = DataAspect()
spoint = select_point(ax.scene)
function coord_to_index(x, y, N)
ix = clamp(round(Int, x), 1, N)
iy = clamp(round(Int, y), 1, N)
return ix, iy
end
r = 5
on(spoint) do pt
if pt === nothing
return
end
x, y = pt
i, j = coord_to_index(x, y, N)
# get corners of square that will get filled with concentration
imin = max(i - r, 1)
imax = min(i + r, N)
jmin = max(j - r, 1)
jmax = min(j + r, N)
# set disbalanced concentration of U and V
U[imin:imax, jmin:jmax] .= 0.5
V[imin:imax, jmin:jmax] .= 0.25
heat_obs[] = copy(U)
end
# # Controls
fig[2, 1] = buttongrid = GridLayout(ax.scene, tellwidth=false)
btn_step = Button(buttongrid[1, 1], width=50, label="Step")
btn_start = Button(buttongrid[1, 2], width=50, label=run_label)
btn_reset = Button(buttongrid[1, 3], width=50, label="Reset")
slidergrid = SliderGrid(fig[3, 1], (label="Speed", range=1:1:100, format="{}x", width=350, startvalue=stepsize[]))
speed_slider = slidergrid.sliders[1].value
on(speed_slider) do s
try
stepsize[] = s
println("Changed stepsize to $s")
catch
@warn "Invalid input for $s"
end
end
gh[1, 2] = textboxgrid = GridLayout(ax.scene, tellwidth=false)
rowsize!(gh, 1, Relative(1.0))
function param_box!(row, labeltxt, observable)
Label(textboxgrid[row, 1], labeltxt)
box = Textbox(textboxgrid[row, 2], validator=Float64, width=50, placeholder=labeltxt, stored_string="$(observable[])")
on(box.stored_string) do s
try
observable[] = parse(Float64, s)
println("changed $labeltxt to $s")
catch
@warn "Invalid input for $labeltxt: $s"
end
end
end
param_box!(1, "Du", Du)
param_box!(2, "Dv", Dv)
param_box!(3, "Feed", F)
param_box!(4, "kill", k)
# Timer and state for animation
running = Observable(false)
function reset!(U, V, heat_obs)
U .= 1.0
V .= 0.0
center = size(U, 1) ÷ 2
radius = 10
U[center-radius:center+radius, center-radius:center+radius] .= 0.50
V[center-radius:center+radius, center-radius:center+radius] .= 0.25
heat_obs[] = copy(U)
end
on(running) do r
run_label[] = r ? "Pause" : "Run"
end
# Button Listeners
on(btn_step.clicks) do _
multi_step!((U, V), stepsize[])
end
on(btn_start.clicks) do _
running[] = !running[]
end
on(btn_start.clicks) do _
@async while running[]
multi_step!((U, V), stepsize[])
sleep(0.05) # ~20 FPS
end
end
on(btn_reset.clicks) do _
running[] = false
reset!(U, V, heat_obs)
end
display(fig)

View File

@ -1,19 +1,10 @@
module GrayScottSolver
using Observables
include("constants.jl")
include("utils/constants.jl")
include("utils/laplacian.jl")
using .Constants
export laplacian5, step!, multi_step!
function laplacian5(f, dx)
h2 = dx^2
left = f[2:end-1, 1:end-2]
right = f[2:end-1, 3:end]
down = f[3:end, 2:end-1]
up = f[1:end-2, 2:end-1]
center = f[2:end-1, 2:end-1]
return (left .+ right .+ down .+ up .- 4 .* center) ./ h2
end
using .Laplacian
export step!, multi_step!
function step!(U, V, params_obs::Observable; dx=1)
lap_u = laplacian5(U, dx)

View File

@ -1,154 +0,0 @@
using DifferentialEquations
using Random
include("constants.jl")
using .Constants
"""
fhn(du, u, p:FHNParams, t:)
Implements the spatial dynamics of FitzHugh-Nagumo (fhn). Designed to be
within a larger numerical solver of partial differential equations.
# Arguments
- `du`: output argument which stores the calculated derivatives
- `u`: input vector containing the current state of the system at time t
- `p`: holds all the fixed parameters of the FHN model
- `t`: current time
# Returns
- `du`: calculated derivatives put back into the du array
"""
function fhn!(du, u, p::FHNParams, t=0)
u_mat = reshape(u[1:p.N^2], p.N, p.N) # activation variable
v_mat = reshape(u[p.N^2+1:end], p.N, p.N) # deactivation variable
Δu = reshape(laplacian(u_mat, p.N, p.dx), p.N, p.N)
Δv = reshape(laplacian(v_mat, p.N, p.dx), p.N, p.N)
fu = p.Du * Δu .+ u_mat .- u_mat .^ 3 ./ 3 .- v_mat
fv = p.Dv * Δv .+ p.ϵ * (u_mat .+ p.a .- p.b .* v_mat)
du .= vcat(vec(fu), vec(fv))
end
"""
run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
solving the ODE and modelling it after FHN
# Arguments
- `tspan`: tuple of two Float64's representing start and end times for simulation
- `N`: size of the N×N grid
# Returns
- `sol`: solved differential equation (ODE)
"""
function run_simulation(tspan::Tuple{Float64,Float64}, N::Int)
# Turing-spot parameters
p = FHNParams(N=N, dx=1.0, Du=1e-5, Dv=1e-3, ϵ=0.01, a=0.1, b=0.5)
# Initial conditions (random noise)
Random.seed!(1234)
# Create two vectors with length N*N with numbers between 0.1 and 0.11
u0 = vec(0.1 .+ 0.01 .* rand(N, N))
v0 = vec(0.1 .+ 0.01 .* rand(N, N))
y0 = vcat(u0, v0)
prob = ODEProblem(fhn!, y0, tspan, p)
sol = solve(prob, BS3(), saveat=1.0) # You can try `Rosenbrock23()` too
return sol
end
# Laplacian with 5-point stencil
function laplacianA(A::Matrix{Float64}, N::Int, dx::Float64)
dx2 = dx^2
lap = zeros(N, N)
lap[2:end-1, 2:end-1] .= (
A[1:end-2, 2:end-1] .+ A[3:end, 2:end-1] # up/down
.+
A[2:end-1, 1:end-2] .+ A[2:end-1, 3:end] # left/right
.-
4 .* A[2:end-1, 2:end-1]
) ./ dx2
return lap
end
# Gray-Scott model: reaction + diffusion
function grayscott!(du, u, p::GSParams, t=0)
N = p.N
U = reshape(u[1:N^2], N, N)
V = reshape(u[N^2+1:end], N, N)
ΔU = laplacianA(U, N, p.dx)
ΔV = laplacianA(V, N, p.dx)
UVV = U .* V .* V
dU = p.Du * ΔU .- UVV .+ p.F .* (1 .- U)
dV = p.Dv * ΔV .+ UVV .- (p.F .+ p.k) .* V
du .= vcat(vec(dU), vec(dV))
end
# Run simulation
function run_simulationG(tspan::Tuple{Float64,Float64}, N::Int, GSP::GSParams)
# Replace this in run_simulation
p = GSP
# Initial conditions: U = 1, V = 0 everywhere
U = ones(N, N)
V = zeros(N, N)
# Seed a square in the center
center = N ÷ 2
radius = 10
U[center-radius:center+radius, center-radius:center+radius] .= 0.50
V[center-radius:center+radius, center-radius:center+radius] .= 0.25
y0 = vcat(vec(U), vec(V))
prob = ODEProblem(grayscott!, y0, tspan, p)
sol = solve(prob, BS3(), saveat=10.0) # or Rosenbrock23()
return sol
end
function run_simulationG_no_ode(tspan::Tuple{Float64,Float64}, N::Int, GSP::GSParams)
p = GSP
dx2 = p.dx^2
dt = 1.0 # fixed timestep
# Initialize U and V
U = ones(N, N)
V = zeros(N, N)
# Seed pattern in the center
center = N ÷ 2
radius = 10
U[center-radius:center+radius, center-radius:center+radius] .= 0.50
V[center-radius:center+radius, center-radius:center+radius] .= 0.25
# Store history for visualization (optional)
snapshots = []
for i in 1:tspan[2]
print("Running $i/$(tspan[2])\r")
lap_U = laplacianA(U, N, p.dx)
lap_V = laplacianA(V, N, p.dx)
UVV = U .* V .* V
dU = p.Du * lap_U .- UVV .+ p.F * (1 .- U)
dV = p.Dv * lap_V .+ UVV .- (p.F + p.k) .* V
U .+= dU * dt
V .+= dV * dt
if i % 100 == 0 # save every 100 steps
push!(snapshots, (copy(U), copy(V)))
end
end
return snapshots
end

View File

@ -1,3 +1,5 @@
module Laplacian
"""
laplacian(U::Matrix{Float64}, N::Int, h::Float64)
@ -18,3 +20,17 @@ function laplacian(U::Matrix{Float64}, N::Int, h::Float64)
circshift(U, (0, -1)) .+ circshift(U, (0, 1)) .- 4 .* U
return vec(padded) ./ h^2
end
function laplacian5(f, dx)
h2 = dx^2
left = f[2:end-1, 1:end-2]
right = f[2:end-1, 3:end]
down = f[3:end, 2:end-1]
up = f[1:end-2, 2:end-1]
center = f[2:end-1, 2:end-1]
return (left .+ right .+ down .+ up .- 4 .* center) ./ h2
end
export laplacian, laplacian5
end # module Laplacian

View File

@ -38,11 +38,13 @@ function step_through_solution(sol, N::Int)
display(fig)
end
function coord_to_index(x, y, N)
ix = clamp(round(Int, x), 1, N)
iy = clamp(round(Int, y), 1, N)
return ix, iy
end
function reset!(U, V, heat_obs)
U .= 1.0
V .= 0.0
@ -52,6 +54,7 @@ function reset!(U, V, heat_obs)
V[center-radius:center+radius, center-radius:center+radius] .= 0.25
heat_obs[] = copy(U)
end
function param_box!(grid, row, labeltxt, observable::Observable)
Label(grid[row, 1], labeltxt)
box = Textbox(grid[row, 2], validator=Float64, width=50, placeholder=labeltxt, stored_string="$(observable[])")