main
2wenty1ne 2025-12-10 11:49:20 +01:00
parent a52de42507
commit 1082c90fea
7 changed files with 194 additions and 141 deletions

View File

@ -2,116 +2,24 @@ import pygame
import math
import os
from ReinforcmentLearning.util import Direction, calc_current_state, calc_time_reward, epsilon_greedy, get_best_q_action, initial_q_fill
import conf
# Initialize pygame
# Define constants
SCREEN_WIDTH = 400
SCREEN_HEIGHT = 400
CELL_SIZE = 40
# Define colors
YELLOW = (255, 255, 0)
RED = (255, 0, 0)
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
BLACK = (0, 0, 0)
REWARD_ON_HALF = 50
# Labyrinth as a string
LABYRINTH_INIT = [
"##########",
"#........#",
"#.##..##.#",
"#........#",
"##########"
]
# Get labyrinth dimensions
ROWS = len(LABYRINTH_INIT)
COLS = len(LABYRINTH_INIT[0])
class Pacman:
def __init__(self, screen, x, y):
self.screen = screen
self.x = x
self.y = y
self.count = 0
def move(self, labyrinth, dx, dy):
new_x, new_y = self.x + dx, self.y + dy
if labyrinth[new_y][new_x] != "#":
self.x = new_x
self.y = new_y
def draw(self):
radius = CELL_SIZE // 2 - 4
start_angle = math.pi / 6
end_angle = -math.pi / 6
pygame.draw.circle(self.screen, YELLOW, (self.x * CELL_SIZE + CELL_SIZE // 2, self.y * CELL_SIZE + CELL_SIZE // 2), CELL_SIZE // 2 - 4)
# Calculate the points for the mouth
start_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(start_angle)),
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(start_angle)))
end_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(end_angle)),
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(end_angle)))
self.count += 1
if self.count%2==0:
# Draw the mouth by filling a polygon
pygame.draw.polygon(self.screen, BLACK, [(self.x* CELL_SIZE + CELL_SIZE // 2, self.y* CELL_SIZE + CELL_SIZE // 2), start_pos, end_pos])
class Ghost:
# Define the pixel art for the ghost using strings
ghost_pixels = [
" #### ",
"######",
"## # #",
"######",
"######",
"# # # "
]
def __init__(self, screen, x, y):
self.screen = screen
self.x = x
self.y = y
def move_towards_pacman(self, labyrinth, pacman):
if self.x < pacman.x and labyrinth[self.y][self.x + 1] != "#":
self.x += 1
elif self.x > pacman.x and labyrinth[self.y][self.x - 1] != "#":
self.x -= 1
elif self.y < pacman.y and labyrinth[self.y + 1][self.x] != "#":
self.y += 1
elif self.y > pacman.y and labyrinth[self.y - 1][self.x] != "#":
self.y -= 1
def draw(self):
pixel_size = CELL_SIZE // len(self.ghost_pixels) # Size of each pixel in the ghost art
for row_idx, row in enumerate(self.ghost_pixels):
for col_idx, pixel in enumerate(row):
if pixel == "#":
pixel_x = self.x * CELL_SIZE + col_idx * pixel_size
pixel_y = self.y * CELL_SIZE + row_idx * pixel_size
pygame.draw.rect(self.screen, RED, (pixel_x, pixel_y, pixel_size, pixel_size))
from ReinforcmentLearning.util import Direction, calc_current_state, calc_time_reward, draw_labyrinth, epsilon_greedy, get_best_q_action, initial_q_fill
import data.classes_consts as consts
import data.conf as conf
# import data.classes as classes
from data.classes import Pacman, Ghost
def start_try(EPSILON, ALPHA, GAMMA):
#? Learning initial
q_values = initial_q_fill()
print(len(q_values))
#? Game initial
pygame.init()
screen = None
if conf.show_game:
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
screen = consts.screen
pygame.display.set_caption("Micro-Pacman")
#? Start try
@ -136,7 +44,7 @@ def start_try(EPSILON, ALPHA, GAMMA):
print(f"Run {x+1}: {iterations_per_run} iterations")
if conf.show_trained:
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
screen = consts.screen
pygame.display.set_caption("Micro-Pacman")
while True:
@ -152,24 +60,21 @@ def start_try(EPSILON, ALPHA, GAMMA):
def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
clock = pygame.time.Clock()
labyrinth = LABYRINTH_INIT.copy()
labyrinth = consts.LABYRINTH_INIT.copy()
# Initialize Pacman and Ghost positions
pacman = Pacman(screen, 1, 1)
ghost = Ghost(screen, COLS - 2, ROWS - 2)
ghost = Ghost(screen, consts.COLS - 2, consts.ROWS - 2)
#? -------------------------MY CODE-----------------------------------
state = calc_current_state(labyrinth, pacman.x, pacman.y, ghost.x, ghost.y)
#? -------------------------MY CODE-----------------------------------
#? GAME LOOP
running = True
iter = 0
while running:
#? -------------------------MY CODE-----------------------------------
reward = 0
#? -------------------------MY CODE-----------------------------------
iter = iter + 1
# Handle events
for event in pygame.event.get():
@ -177,12 +82,9 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
running = False
if conf.show_game:
screen.fill(BLACK)
screen.fill(consts.BLACK)
iter = iter + 1
# Handle Pacman movement
#? Arrow key movements
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:
pacman.move(-1, 0)
@ -193,8 +95,7 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
if keys[pygame.K_DOWN]:
pacman.move(0, 1)
#? -------------------------MY CODE-----------------------------------
#? Agent movements
action = epsilon_greedy(q_values, state, EPSILON)
if action == Direction.LEFT:
pacman.move(labyrinth, -1, 0)
@ -204,7 +105,6 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
pacman.move(labyrinth, 0, -1)
if action == Direction.DOWN:
pacman.move(labyrinth, 0, 1)
#? -------------------------MY CODE-----------------------------------
if iter%3==0:
@ -220,9 +120,7 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
if labyrinth[pacman.y][pacman.x] == ".":
labyrinth[pacman.y] = labyrinth[pacman.y][:pacman.x] + " " + labyrinth[pacman.y][pacman.x+1:]
#? -------------------------MY CODE-----------------------------------
#? half reward
# cookie_counter = 0
# for y, row in enumerate(labyrinth):
@ -234,10 +132,8 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
# # reward = REWARD_ON_HALF
# if show_game:
# print("Got half reward")
#? -------------------------MY CODE-----------------------------------
# Check if all cookies are eaten (game over)
if all("." not in row for row in labyrinth):
# time_reward = calc_time_reward(iter)
# reward = REWARD_ON_WIN * time_reward
@ -245,11 +141,9 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
running = False
if conf.show_game:
# print(f"You Win! Took {iter} iterations, reward: {time_reward}")
print(f"You Win! Took {iter} iterations")
#? -------------------------MY CODE-----------------------------------
if not running:
new_state = state
else:
@ -271,10 +165,8 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
if cell == ".":
counter += 1
return 20-counter, iter
#? -------------------------MY CODE-----------------------------------
# Draw the labyrinth, pacman, and ghost
if conf.show_game:
draw_labyrinth(screen, labyrinth)
pacman.draw()
@ -287,16 +179,5 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
clock.tick(40)
def draw_labyrinth(screen, labyrinth):
for y, row in enumerate(labyrinth):
for x, cell in enumerate(row):
if cell == "#":
pygame.draw.rect(screen, BLUE, (x * CELL_SIZE, y * CELL_SIZE, CELL_SIZE, CELL_SIZE))
elif cell == ".":
pygame.draw.circle(screen, WHITE, (x * CELL_SIZE + CELL_SIZE // 2, y * CELL_SIZE + CELL_SIZE // 2), 5)
if __name__ == "__main__":
run_game()

View File

@ -5,7 +5,7 @@ import numpy as np
import pandas as pd
from ReinforcmentLearning.game import start_try
import conf
import data.conf as conf

View File

@ -1,5 +1,10 @@
from enum import Enum
import random
import pygame
import numpy as np
import data.classes_consts as consts
class Direction(Enum):
UP = 0
@ -17,17 +22,24 @@ def initial_q_fill():
for action in Direction:
state = (x, y, cookie_direction)
q_values[(state, action)] = random.random() * 0.2 - 0.1
# q_values[state][action] = random.random() * 0.2 - 0.1
return q_values
def initial_q_fill2():
indexer = consts.indexer
def get_start_state():
first_direction_cookie = random.choice([True, False])
if first_direction_cookie:
return (7, 2, Direction.DOWN)
"""Initialize Q-table using linear indexing"""
# Create 2D array: [state_index, action]
# 300 states × 4 actions = 1200 entries
q_table = np.random.uniform(
low=-0.1,
high=0.1,
size=(indexer.total_states, 4) # 300 × 4
)
return(7, 2, Direction.RIGHT)
return q_table, indexer
@ -140,3 +152,17 @@ def calc_time_reward(amount_iterations):
return 1
return - (1 / 1000) * amount_iterations + 11
def draw_labyrinth(screen, labyrinth):
CELL_SIZE = consts.CELL_SIZE
BLUE = consts.BLUE
WHITE = consts.WHITE
for y, row in enumerate(labyrinth):
for x, cell in enumerate(row):
if cell == "#":
pygame.draw.rect(screen, BLUE, (x * CELL_SIZE, y * CELL_SIZE, CELL_SIZE, CELL_SIZE))
elif cell == ".":
pygame.draw.circle(screen, WHITE, (x * CELL_SIZE + CELL_SIZE // 2, y * CELL_SIZE + CELL_SIZE // 2), 5)

111
data/classes.py 100644
View File

@ -0,0 +1,111 @@
import math
import pygame
from data.classes_consts import CELL_SIZE, YELLOW, BLACK, RED
class Pacman:
def __init__(self, screen, x, y):
self.screen = screen
self.x = x
self.y = y
self.count = 0
def move(self, labyrinth, dx, dy):
new_x, new_y = self.x + dx, self.y + dy
if labyrinth[new_y][new_x] != "#":
self.x = new_x
self.y = new_y
def draw(self):
radius = CELL_SIZE // 2 - 4
start_angle = math.pi / 6
end_angle = -math.pi / 6
pygame.draw.circle(self.screen, YELLOW, (self.x * CELL_SIZE + CELL_SIZE // 2, self.y * CELL_SIZE + CELL_SIZE // 2), CELL_SIZE // 2 - 4)
# Calculate the points for the mouth
start_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(start_angle)),
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(start_angle)))
end_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(end_angle)),
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(end_angle)))
self.count += 1
if self.count%2==0:
# Draw the mouth by filling a polygon
pygame.draw.polygon(self.screen, BLACK, [(self.x* CELL_SIZE + CELL_SIZE // 2, self.y* CELL_SIZE + CELL_SIZE // 2), start_pos, end_pos])
class Ghost:
# Define the pixel art for the ghost using strings
ghost_pixels = [
" #### ",
"######",
"## # #",
"######",
"######",
"# # # "
]
def __init__(self, screen, x, y):
self.screen = screen
self.x = x
self.y = y
def move_towards_pacman(self, labyrinth, pacman):
if self.x < pacman.x and labyrinth[self.y][self.x + 1] != "#":
self.x += 1
elif self.x > pacman.x and labyrinth[self.y][self.x - 1] != "#":
self.x -= 1
elif self.y < pacman.y and labyrinth[self.y + 1][self.x] != "#":
self.y += 1
elif self.y > pacman.y and labyrinth[self.y - 1][self.x] != "#":
self.y -= 1
def draw(self):
pixel_size = CELL_SIZE // len(self.ghost_pixels) # Size of each pixel in the ghost art
for row_idx, row in enumerate(self.ghost_pixels):
for col_idx, pixel in enumerate(row):
if pixel == "#":
pixel_x = self.x * CELL_SIZE + col_idx * pixel_size
pixel_y = self.y * CELL_SIZE + row_idx * pixel_size
pygame.draw.rect(self.screen, RED, (pixel_x, pixel_y, pixel_size, pixel_size))
class StateIndexer:
"""Converts (x, y, cookie_dir) states to unique indices"""
def __init__(self):
# State space boundaries
self.x_min, self.x_max = -7, 7 # 15 values: -7 to 7 inclusive
self.y_min, self.y_max = -2, 2 # 5 values: -2 to 2 inclusive
self.dir_min, self.dir_max = 0, 3 # 4 directions: 0 to 3
# Ranges
self.x_range = self.x_max - self.x_min + 1 # 15
self.y_range = self.y_max - self.y_min + 1 # 5
self.dir_range = self.dir_max - self.dir_min + 1 # 4
# Multipliers for indexing
self.y_dir_product = self.y_range * self.dir_range # 5 * 4 = 20
self.total_states = self.x_range * self.y_dir_product # 15 * 20 = 300
def to_index(self, x, y, cookie_dir):
"""Convert state to unique index 0..299"""
# Convert to zero-based indices
x_idx = x - self.x_min # -7→0, -6→1, ..., 7→14
y_idx = y - self.y_min # -2→0, -1→1, ..., 2→4
dir_idx = cookie_dir - self.dir_min # 0→0, 1→1, 2→2, 3→3
# Linear mapping: (x * y_range * dir_range) + (y * dir_range) + dir
return (x_idx * self.y_dir_product) + (y_idx * self.dir_range) + dir_idx
def from_index(self, idx):
"""Convert index back to state"""
dir_idx = idx % self.dir_range
idx //= self.dir_range
y_idx = idx % self.y_range
x_idx = idx // self.y_range
return (
x_idx + self.x_min,
y_idx + self.y_min,
dir_idx + self.dir_min
)

View File

@ -0,0 +1,29 @@
import pygame
LABYRINTH_INIT = [
"##########",
"#........#",
"#.##..##.#",
"#........#",
"##########"
]
SCREEN_WIDTH = 400
SCREEN_HEIGHT = 400
CELL_SIZE = 40
# Define colors
YELLOW = (255, 255, 0)
RED = (255, 0, 0)
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
BLACK = (0, 0, 0)
# Get labyrinth dimensions
ROWS = len(LABYRINTH_INIT)
COLS = len(LABYRINTH_INIT[0])
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))

View File

@ -1,3 +1,8 @@
from data.classes import StateIndexer
indexer = StateIndexer()
EPSILON = 0.01
# EPSILON = 0.005
ALPHA = 0.2
@ -7,8 +12,9 @@ AMOUNT_RUNS = 5000
AMOUNT_TRIES = 5
REWARD_ON_WIN = 400
REWARD_ON_HALF = 50
REWARD_ON_LOSE = -250
plot_result = True
show_game = False
show_game = True
show_trained = True

View File

@ -1,7 +1,7 @@
from GenTunic.gen_tuning import gen_tuning_main
from ReinforcmentLearning.learning import multipleTries, oneTry
from ReinforcmentLearning.util import calc_time_reward
import conf
import data.conf as conf