fixed multiple_tries_win_prob, print changes
parent
e6ec752ea3
commit
b4f67688e8
|
|
@ -22,13 +22,14 @@ def calc_population_fitness(population_propability, AMOUNT_TRIES, AMOUNT_RUNS, R
|
||||||
for i, individual in enumerate(population_propability):
|
for i, individual in enumerate(population_propability):
|
||||||
gen = individual["population"]
|
gen = individual["population"]
|
||||||
alpha, epsilon, gamma = [project_bit(x) for x in np.split(gen, 3)]
|
alpha, epsilon, gamma = [project_bit(x) for x in np.split(gen, 3)]
|
||||||
_, multiple_tries_win_prob = multipleTries(alpha, epsilon, gamma, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
_, multiple_tries_wins = multipleTries(alpha, epsilon, gamma, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
||||||
|
multiple_tries_win_prob = np.divide(np.array(multiple_tries_wins), AMOUNT_RUNS)
|
||||||
fitness = np.array(multiple_tries_win_prob).mean()
|
fitness = np.array(multiple_tries_win_prob).mean()
|
||||||
|
|
||||||
individual["probability"] = fitness
|
individual["probability"] = fitness
|
||||||
population_fitness_sum += fitness
|
population_fitness_sum += fitness
|
||||||
|
|
||||||
print(f"{i}: {fitness}")
|
print(f"Individual {i}: {fitness}")
|
||||||
|
|
||||||
|
|
||||||
best_fitness_index = np.argmax(population_propability["probability"])
|
best_fitness_index = np.argmax(population_propability["probability"])
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue