small changes
parent
738b122f43
commit
d13e22c66e
|
|
@ -1 +1 @@
|
||||||
/__pycache__/
|
__pycache__/
|
||||||
|
|
@ -21,8 +21,10 @@ def gen_tuning_main(AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
||||||
|
|
||||||
best_fintess_values = []
|
best_fintess_values = []
|
||||||
best_fitness = 0
|
best_fitness = 0
|
||||||
|
counter = 0
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
|
print(f"Starting eveloution round {counter + 1}")
|
||||||
#? Calc fitness
|
#? Calc fitness
|
||||||
population_propability, fintess_values = calc_population_fitness(population, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
population_propability, fintess_values = calc_population_fitness(population, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
||||||
|
|
||||||
|
|
@ -46,6 +48,8 @@ def gen_tuning_main(AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
||||||
#? Mutation
|
#? Mutation
|
||||||
population = mutation(new_population, MUTATION_RATE, GEN_SIZE)
|
population = mutation(new_population, MUTATION_RATE, GEN_SIZE)
|
||||||
|
|
||||||
|
counter += 1
|
||||||
|
|
||||||
|
|
||||||
population_propability, fintess_values = calc_population_fitness(population, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
population_propability, fintess_values = calc_population_fitness(population, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
||||||
best_fintess_index, best_fitness = fintess_values
|
best_fintess_index, best_fitness = fintess_values
|
||||||
|
|
|
||||||
|
|
@ -19,7 +19,7 @@ def create_population(size, GEN_SIZE):
|
||||||
def calc_population_fitness(population_propability, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
def calc_population_fitness(population_propability, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
||||||
population_fitness_sum = 0
|
population_fitness_sum = 0
|
||||||
|
|
||||||
for individual in population_propability:
|
for i, individual in enumerate(population_propability):
|
||||||
gen = individual["population"]
|
gen = individual["population"]
|
||||||
alpha, epsilon, gamma = [project_bit(x) for x in np.split(gen, 3)]
|
alpha, epsilon, gamma = [project_bit(x) for x in np.split(gen, 3)]
|
||||||
_, multiple_tries_win_prob = multipleTries(alpha, epsilon, gamma, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
_, multiple_tries_win_prob = multipleTries(alpha, epsilon, gamma, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE)
|
||||||
|
|
@ -28,6 +28,8 @@ def calc_population_fitness(population_propability, AMOUNT_TRIES, AMOUNT_RUNS, R
|
||||||
individual["probability"] = fitness
|
individual["probability"] = fitness
|
||||||
population_fitness_sum += fitness
|
population_fitness_sum += fitness
|
||||||
|
|
||||||
|
print(f"{i}: {fitness}")
|
||||||
|
|
||||||
|
|
||||||
best_fitness_index = np.argmax(population_propability["probability"])
|
best_fitness_index = np.argmax(population_propability["probability"])
|
||||||
best_fitness = population_propability[best_fitness_index]["probability"]
|
best_fitness = population_propability[best_fitness_index]["probability"]
|
||||||
|
|
|
||||||
|
|
@ -7,7 +7,6 @@ from ReinforcmentLearning.util import initial_q_fill
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def multipleTries(EPSILON, ALPHA, GAMMA, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
def multipleTries(EPSILON, ALPHA, GAMMA, AMOUNT_TRIES, AMOUNT_RUNS, REWARD_ON_WIN, REWARD_ON_LOSE):
|
||||||
cookies_per_try = []
|
cookies_per_try = []
|
||||||
wins_per_try = []
|
wins_per_try = []
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue