import math import pygame from data.classes_consts import CELL_SIZE, YELLOW, BLACK, RED class Pacman: def __init__(self, screen, x, y): self.screen = screen self.x = x self.y = y self.count = 0 def move(self, labyrinth, dx, dy): new_x, new_y = self.x + dx, self.y + dy if labyrinth[new_y][new_x] != "#": self.x = new_x self.y = new_y def draw(self): radius = CELL_SIZE // 2 - 4 start_angle = math.pi / 6 end_angle = -math.pi / 6 pygame.draw.circle(self.screen, YELLOW, (self.x * CELL_SIZE + CELL_SIZE // 2, self.y * CELL_SIZE + CELL_SIZE // 2), CELL_SIZE // 2 - 4) # Calculate the points for the mouth start_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(start_angle)), self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(start_angle))) end_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(end_angle)), self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(end_angle))) self.count += 1 if self.count%2==0: # Draw the mouth by filling a polygon pygame.draw.polygon(self.screen, BLACK, [(self.x* CELL_SIZE + CELL_SIZE // 2, self.y* CELL_SIZE + CELL_SIZE // 2), start_pos, end_pos]) class Ghost: # Define the pixel art for the ghost using strings ghost_pixels = [ " #### ", "######", "## # #", "######", "######", "# # # " ] def __init__(self, screen, x, y): self.screen = screen self.x = x self.y = y def move_towards_pacman(self, labyrinth, pacman): if self.x < pacman.x and labyrinth[self.y][self.x + 1] != "#": self.x += 1 elif self.x > pacman.x and labyrinth[self.y][self.x - 1] != "#": self.x -= 1 elif self.y < pacman.y and labyrinth[self.y + 1][self.x] != "#": self.y += 1 elif self.y > pacman.y and labyrinth[self.y - 1][self.x] != "#": self.y -= 1 def draw(self): pixel_size = CELL_SIZE // len(self.ghost_pixels) # Size of each pixel in the ghost art for row_idx, row in enumerate(self.ghost_pixels): for col_idx, pixel in enumerate(row): if pixel == "#": pixel_x = self.x * CELL_SIZE + col_idx * pixel_size pixel_y = self.y * CELL_SIZE + row_idx * pixel_size pygame.draw.rect(self.screen, RED, (pixel_x, pixel_y, pixel_size, pixel_size)) class StateIndexer: """Converts (x, y, cookie_dir) states to unique indices""" def __init__(self): # State space boundaries self.x_min, self.x_max = -7, 7 # 15 values: -7 to 7 inclusive self.y_min, self.y_max = -2, 2 # 5 values: -2 to 2 inclusive self.dir_min, self.dir_max = 0, 3 # 4 directions: 0 to 3 # Ranges self.x_range = self.x_max - self.x_min + 1 # 15 self.y_range = self.y_max - self.y_min + 1 # 5 self.dir_range = self.dir_max - self.dir_min + 1 # 4 # Multipliers for indexing self.y_dir_product = self.y_range * self.dir_range # 5 * 4 = 20 self.total_states = self.x_range * self.y_dir_product # 15 * 20 = 300 def to_index(self, x, y, cookie_dir): """Convert state to unique index 0..299""" # Convert to zero-based indices x_idx = x - self.x_min # -7→0, -6→1, ..., 7→14 y_idx = y - self.y_min # -2→0, -1→1, ..., 2→4 dir_idx = cookie_dir - self.dir_min # 0→0, 1→1, 2→2, 3→3 # Linear mapping: (x * y_range * dir_range) + (y * dir_range) + dir return (x_idx * self.y_dir_product) + (y_idx * self.dir_range) + dir_idx def from_index(self, idx): """Convert index back to state""" dir_idx = idx % self.dir_range idx //= self.dir_range y_idx = idx % self.y_range x_idx = idx // self.y_range return ( x_idx + self.x_min, y_idx + self.y_min, dir_idx + self.dir_min )