main
parent
9b8a746e15
commit
b7841fd8b1
|
|
@ -0,0 +1,22 @@
|
|||
import doctest
|
||||
|
||||
def filter_and_scale(numbers, scale=1):
|
||||
"""
|
||||
Eine Funktion um aus einer gegebenen Liste alle positiven Zahlen zu extrahieren, diese mit dem Skalierungsfaktor zu addieren und eine Liste mit den Werten zurückzugeben.
|
||||
:param numbers: Liste mit allen Zahlen
|
||||
:param scale: Skalierungsfaktor, default Wert ist 1
|
||||
:return: Array mit nur positiven skalierten Zahlen
|
||||
|
||||
>>> filter_and_scale([1, -2, 3, 0, -4, 5], scale=2)
|
||||
[2, 6, 10]
|
||||
"""
|
||||
returnList = []
|
||||
for elem in numbers:
|
||||
if elem > 0:
|
||||
returnList.append(elem * scale)
|
||||
|
||||
return returnList
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
doctest.testmod()
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
|
||||
F = lambda x: x*x
|
||||
|
||||
print(F(5))
|
||||
|
||||
t = (1,2,3,7)
|
||||
|
||||
print(type(t))
|
||||
|
||||
u = list(t)
|
||||
|
||||
print(type(u))
|
||||
|
||||
print(u[-1])
|
||||
|
||||
# for idx, x in enumerate(t):
|
||||
# print(idx, x)
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
import numpy as np
|
||||
|
||||
d=np.load("npdata12.npy")
|
||||
print(d)
|
||||
print("\n\nG1")
|
||||
|
||||
g1 = d[d[:, 0] == 1][:,1]
|
||||
print(g1.mean())
|
||||
|
||||
print(g1.shape)
|
||||
|
||||
# print(head(d))
|
||||
|
||||
|
||||
|
||||
M = np.array([[1,2,3], [4,5,6]])
|
||||
|
||||
r = M[:,[1,0,2,1]]
|
||||
|
||||
# print(r)
|
||||
|
||||
|
||||
Binary file not shown.
|
|
@ -0,0 +1,11 @@
|
|||
ID;Alter;Geschlecht;Blutgruppe;Raucher;Größe;Chars
|
||||
10;1;W;6;nein;168;1
|
||||
10;17;W;6;nein;168;2
|
||||
20;5;M;0;ja;175;3
|
||||
30;24;W;1;ja;176;4
|
||||
40;22;D;2;ja;177;5
|
||||
50;23;M;3;nein;178;6
|
||||
60;6;D;4;ja;178;5
|
||||
70;23;M;5;nein;170;6
|
||||
75;6;W;6;ja;179;0
|
||||
90;23;M;7;ja;179;0
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
year = [1800, 1850, 1900, 1950, 1970, 1990, 2010, 2100]
|
||||
pop = [1.0, 1.262, 1.650, 2.519, 3.692, 5.263, 6.972, 10.85]
|
||||
values = [0,0.6,1.4,1.6,2.2,2.5,2.6,3.2,3.5,3.9,4.2,6]
|
||||
|
||||
# plt.scatter(year, pop)
|
||||
|
||||
# # plt.plot(year, pop)
|
||||
|
||||
|
||||
# plt.xlabel('Year')
|
||||
# plt.ylabel('Population')
|
||||
# plt.title('World Population')
|
||||
|
||||
# plt.yticks([0, 2, 4, 6, 8, 10],
|
||||
# ['0', '2 Mrd', '4 Mrd',
|
||||
# '6 Mrd', '8 Mrd', '10 Mrd'])
|
||||
|
||||
# plt.show()
|
||||
# plt.figure()
|
||||
|
||||
f, ax = plt.subplots(1,2, figsize=(3,1))
|
||||
ax[0].plot(year, pop)
|
||||
ax[1].hist(values, bins=3)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
import numpy as np
|
||||
|
||||
e = np.array([[1,2,3], [2,3,4]])
|
||||
|
||||
|
||||
|
||||
s = "Hallo"
|
||||
|
||||
for x in dir(e):
|
||||
print(x)
|
||||
|
||||
|
||||
|
||||
print(s.lower())
|
||||
|
|
@ -0,0 +1,97 @@
|
|||
import numpy as np
|
||||
|
||||
s = {1,2,3}
|
||||
sn = np.array(s)
|
||||
|
||||
print(sn)
|
||||
print(type(sn))
|
||||
|
||||
l = [1,2,3]
|
||||
ln = np.array(l)
|
||||
|
||||
print(ln)
|
||||
print(type(ln))
|
||||
|
||||
t = (1,2,3)
|
||||
tn = np.array(t)
|
||||
|
||||
print(tn)
|
||||
print(type(tn))
|
||||
|
||||
s = "Hallo"
|
||||
print(s[2:])
|
||||
|
||||
print(s[:-2])
|
||||
|
||||
|
||||
a = [1,2,3]
|
||||
c = a
|
||||
b = a[:]
|
||||
a[0] = 6
|
||||
|
||||
print(f"A: {a}")
|
||||
print(f"B: {b}")
|
||||
print(f"C: {c}")
|
||||
print("\n")
|
||||
|
||||
a = np.array([7,3,1])
|
||||
|
||||
print(a)
|
||||
a += [1,2,3]
|
||||
print(a)
|
||||
|
||||
print("\n")
|
||||
|
||||
b = np.array([[1,2], [2,3], [4,5]])
|
||||
|
||||
print(b)
|
||||
print("\n")
|
||||
|
||||
|
||||
inner = [[1,2,0], [0,3,4]]
|
||||
c = np.array([inner, inner])
|
||||
print(c.ndim)
|
||||
print(c.shape)
|
||||
print("\n")
|
||||
|
||||
|
||||
d = np.array([1,2])
|
||||
print(d)
|
||||
print(d.T)
|
||||
print("\n")
|
||||
|
||||
|
||||
M = np.array([[1,2,3], [2,3,4], [3,4,5]])
|
||||
N = M.copy()
|
||||
print(M)
|
||||
print("")
|
||||
print(f"Test:")
|
||||
print(M[:,1:3])
|
||||
print(M[:, [1,2,1]])
|
||||
|
||||
MSpalte = M[:, 0:2]
|
||||
MZeile = M[:, [0,2,0]]
|
||||
print(f"Spalte:\n {MSpalte}")
|
||||
print(f"Zeile:\n {MZeile}")
|
||||
print("\n")
|
||||
|
||||
M = np.array([[1,2,3], [2,3,4], [3,4,5]])
|
||||
MCon = M > 2
|
||||
print(f"Con:\n {MCon}")
|
||||
M[M>2]=17
|
||||
print(M)
|
||||
print("\n")
|
||||
|
||||
print(N)
|
||||
print("")
|
||||
new = (N>3) & (N > 3)
|
||||
print(new)
|
||||
|
||||
print((N > 2) & (N < 5))
|
||||
print("\n")
|
||||
|
||||
|
||||
vec1 = np.array([1,2,3])
|
||||
vec2 = np.array([2,3,4])
|
||||
|
||||
print(np.matmul(vec1, vec2))
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
import pandas as pd
|
||||
|
||||
df = pd.read_csv("daten.csv",
|
||||
delimiter=";",
|
||||
na_values=["."],
|
||||
index_col="ID",
|
||||
encoding="utf-8")
|
||||
|
||||
|
||||
df2 = df.sort_values(["Größe", "ID"])
|
||||
|
||||
# df3 = df.drop([80,90])
|
||||
# df4 = df.drop(columns=["Raucher", "Blutgruppe"])
|
||||
|
||||
|
||||
df3 = df2[df2["Größe"] > 175]
|
||||
|
||||
# elems = df2.loc[[10], "Blutgruppe":"Größe"]
|
||||
# elems = df2.iloc[0:3, 0:2]
|
||||
# elems = df2.loc[20:80,"Geschlecht":"Raucher"]
|
||||
|
||||
print(df2)
|
||||
|
||||
# print("")
|
||||
# print(f"Type: {type(elems)}")
|
||||
# print(elems)
|
||||
|
||||
# print(df2.index)
|
||||
# df5 = df2.set_index("Alter", append=True)
|
||||
df5 = df2.set_index(["Alter", "Geschlecht"], append=True)
|
||||
# print(df5)
|
||||
# print(df5.index)
|
||||
|
||||
rowsIter = df.iterrows()
|
||||
colsIter = df.items()
|
||||
|
||||
# print("Befor row loop:\n")
|
||||
# for rowLabel, row in rowsIter:
|
||||
# print(f"Label: {type(rowLabel)}, row: {type(row)}")
|
||||
# print(f"{rowLabel}:\n{row}\n")
|
||||
|
||||
# print("Befor col loop:\n")
|
||||
# for colLabel, col in colsIter:
|
||||
# print(f"Label: {type(colLabel)}, Col: {type(col)}")
|
||||
# print(f"{colLabel}:\n{col}\n")
|
||||
|
||||
# print("\n")
|
||||
# nextCol = next(colsIter)
|
||||
# nextColLabel = nextCol[0]
|
||||
# nextColSeries = nextCol[1]
|
||||
|
||||
# print(f"Label: {nextColLabel}")
|
||||
# print(f"Series:\n{nextColSeries}")
|
||||
|
||||
# seriesIter = nextColSeries.items()
|
||||
# nextElem = next(seriesIter)
|
||||
|
||||
# print(nextElem)
|
||||
print(df2)
|
||||
df7 = df2.fillna(0)
|
||||
# print(df7)
|
||||
|
||||
print(df)
|
||||
meanRet = df.max()
|
||||
print(type(meanRet))
|
||||
print(meanRet)
|
||||
|
|
@ -0,0 +1,80 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
df = pd.read_csv("daten.csv",
|
||||
delimiter=";",
|
||||
na_values=["."],
|
||||
index_col="ID",
|
||||
encoding="utf-8")
|
||||
|
||||
meanRet = df.max()
|
||||
# print(type(meanRet))
|
||||
# print(meanRet)
|
||||
|
||||
onlyNumsDf = df[["Alter", "Größe"]]
|
||||
# print(onlyNumsDf.mean())
|
||||
|
||||
df["Alter2"] = df["Alter"] * 2
|
||||
# print(df)
|
||||
|
||||
onlyAlter = df["Alter"]
|
||||
alterMean = onlyAlter.max()
|
||||
# print(type(alterMean))
|
||||
# print(alterMean)
|
||||
|
||||
charMap = {
|
||||
0: "",
|
||||
1: "A",
|
||||
2: "M",
|
||||
3: "O",
|
||||
4: "G",
|
||||
5: "U",
|
||||
6: "S",
|
||||
}
|
||||
|
||||
def intToChar(col):
|
||||
retString = ""
|
||||
for num in col:
|
||||
char = charMap.get(num, " ")
|
||||
retString += char
|
||||
|
||||
return retString
|
||||
|
||||
|
||||
def timesTwo(num):
|
||||
return num*2
|
||||
|
||||
charNums = df[["Alter", "Chars"]]
|
||||
print(charNums)
|
||||
print("")
|
||||
def map_numbers_to_string(column):
|
||||
return "".join(charMap[num] for num in column)
|
||||
|
||||
|
||||
print(charNums.apply(intToChar, axis=0))
|
||||
print("")
|
||||
print(charNums.apply(timesTwo, axis=0))
|
||||
# print(charNums.apply(intToChar))
|
||||
print("")
|
||||
alterSeries = df[["Alter"]]
|
||||
print(alterSeries.apply(np.sum, axis=0))
|
||||
|
||||
print(df)
|
||||
raucherGeschlechtDf = df.loc[10:70 ,["Raucher","Geschlecht"]]
|
||||
geschlechtGrößeDf = df.loc[50:90, ["Geschlecht", "Größe"]]
|
||||
alterBlutgruppeDf = df.loc[50:90 ,["Alter", "Blutgruppe"]]
|
||||
print("\nRaucher Geschlecht: ")
|
||||
print(raucherGeschlechtDf)
|
||||
print("\nGeschlecht Größe: ")
|
||||
print(geschlechtGrößeDf)
|
||||
|
||||
# print("\nMerge: ")
|
||||
# res = raucherGeschlechtDf.merge(geschlechtGrößeDf, on="Geschlecht")
|
||||
|
||||
print("\nGroup: ")
|
||||
res = raucherGeschlechtDf.groupby(geschlechtGrößeDf, by="Geschlecht")
|
||||
|
||||
print(res)
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue