import pandas as pd df = pd.read_csv("daten.csv", delimiter=";", na_values=["."], index_col="ID", encoding="utf-8") df2 = df.sort_values(["Größe", "ID"]) # df3 = df.drop([80,90]) # df4 = df.drop(columns=["Raucher", "Blutgruppe"]) df3 = df2[df2["Größe"] > 175] # elems = df2.loc[[10], "Blutgruppe":"Größe"] # elems = df2.iloc[0:3, 0:2] # elems = df2.loc[20:80,"Geschlecht":"Raucher"] print(df2) # print("") # print(f"Type: {type(elems)}") # print(elems) # print(df2.index) # df5 = df2.set_index("Alter", append=True) df5 = df2.set_index(["Alter", "Geschlecht"], append=True) # print(df5) # print(df5.index) rowsIter = df.iterrows() colsIter = df.items() # print("Befor row loop:\n") # for rowLabel, row in rowsIter: # print(f"Label: {type(rowLabel)}, row: {type(row)}") # print(f"{rowLabel}:\n{row}\n") # print("Befor col loop:\n") # for colLabel, col in colsIter: # print(f"Label: {type(colLabel)}, Col: {type(col)}") # print(f"{colLabel}:\n{col}\n") # print("\n") # nextCol = next(colsIter) # nextColLabel = nextCol[0] # nextColSeries = nextCol[1] # print(f"Label: {nextColLabel}") # print(f"Series:\n{nextColSeries}") # seriesIter = nextColSeries.items() # nextElem = next(seriesIter) # print(nextElem) print(df2) df7 = df2.fillna(0) # print(df7) print(df) meanRet = df.max() print(type(meanRet)) print(meanRet)