import pandas as pd import numpy as np df = pd.read_csv("daten.csv", delimiter=";", na_values=["."], index_col="ID", encoding="utf-8") meanRet = df.max() # print(type(meanRet)) # print(meanRet) onlyNumsDf = df[["Alter", "Größe"]] # print(onlyNumsDf.mean()) df["Alter2"] = df["Alter"] * 2 # print(df) onlyAlter = df["Alter"] alterMean = onlyAlter.max() # print(type(alterMean)) # print(alterMean) charMap = { 0: "", 1: "A", 2: "M", 3: "O", 4: "G", 5: "U", 6: "S", } def intToChar(col): retString = "" for num in col: char = charMap.get(num, " ") retString += char return retString def timesTwo(num): return num*2 charNums = df[["Alter", "Chars"]] print(charNums) print("") def map_numbers_to_string(column): return "".join(charMap[num] for num in column) print(charNums.apply(intToChar, axis=0)) print("") print(charNums.apply(timesTwo, axis=0)) # print(charNums.apply(intToChar)) print("") alterSeries = df[["Alter"]] print(alterSeries.apply(np.sum, axis=0)) print(df) raucherGeschlechtDf = df.loc[10:70 ,["Raucher","Geschlecht"]] geschlechtGrößeDf = df.loc[50:90, ["Geschlecht", "Größe"]] alterBlutgruppeDf = df.loc[50:90 ,["Alter", "Blutgruppe"]] print("\nRaucher Geschlecht: ") print(raucherGeschlechtDf) print("\nGeschlecht Größe: ") print(geschlechtGrößeDf) # print("\nMerge: ") # res = raucherGeschlechtDf.merge(geschlechtGrößeDf, on="Geschlecht") print("\nGroup: ") res = raucherGeschlechtDf.groupby(geschlechtGrößeDf, by="Geschlecht") print(res)