main
NIls Rekus 2025-02-11 20:51:21 +01:00
parent 5a9cd6efad
commit 01b971b610
1 changed files with 58 additions and 29 deletions

View File

@ -28,7 +28,7 @@ class SimpleHumorDataset(Dataset):
self.tokenizer = tokenizer self.tokenizer = tokenizer
self.max_length = max_length self.max_length = max_length
self.text = dataframe['text'].tolist() self.text = dataframe['text'].tolist()
self.labels = dataframe['is_humor'].tolist() self.labels = dataframe['is_humor'].unique().tolist()
def __getitem__(self,idx): def __getitem__(self,idx):
text = self.text text = self.text
labels = self.labels labels = self.labels
@ -49,7 +49,7 @@ class SimpleHumorDataset(Dataset):
return { return {
'input_ids': torch.as_tensor(input_ids,dtype=torch.long), 'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long), 'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
'labels':torch.as_tensor(self.labels,dtype=torch.long), 'labels':torch.as_tensor(self.labels,dtype=torch.float),
'text':text 'text':text
} }
@ -57,40 +57,54 @@ class SimpleHumorDataset(Dataset):
return len(self.labels) return len(self.labels)
class BERT(nn.Module): class CustomBert(nn.Module):
def __init__(self,dropout,num_layers=2): def __init__(self,dropout,num_layers=2):
super().__init__() super(CustomBert,self).__init__()
self.model = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"),
self.ln1 = nn.Linear(768,num_layers), self.bfsc = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"),
self.bert_model = self.bfsc[0]
# Add Custom Layers
self.dropout = nn.Dropout(dropout), self.dropout = nn.Dropout(dropout),
self.dropout = self.dropout[0]
self.ln1 = nn.Linear(2,2),
self.ln1 = self.ln1[0]
self.sm1 = nn.Sigmoid() self.sm1 = nn.Sigmoid()
def forward(self,input_ids,attention_mask): def forward(self, input_ids, attention_mask):
return self.sm1(self.dropout(self.ln1(self.model[0](input_ids,attention_mask)))) seq_out = self.bert_model(input_ids, attention_mask = attention_mask)
# return self.model(input_ids) x = self.dropout(seq_out.logits)
x = self.ln1(x)
return self.sm1(x)
def train(self,criterion,optimizer,train_loader): def training_loop(model,criterion,optimizer,train_loader):
self.model[0].train() model.to(DEVICE)
model.train()
total_loss = 0 total_loss = 0
for train_batch in train_loader: for index, train_batch in enumerate(train_loader):
# Set Gradient to Zero
optimizer.zero_grad() optimizer.zero_grad()
input_ids, att_mask, labels,_ = train_batch # Unpack batch values and "push" it to GPU
outputs = self.forward(input_ids,att_mask) input_ids, att_mask, labels,_ = train_batch.values()
loss = criterion(outputs,labels) input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
# Feed Model with Data
outputs = model(input_ids, attention_mask=att_mask)
print(f"Output Tensor: {outputs}")
loss = criterion(outputs,labels.float())
loss.backward() loss.backward()
optimizer.step() optimizer.step()
total_loss+=loss.item() total_loss+=loss.item()
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}") print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
def eval(model,criterion,validation_loader): def eval_loop(model,criterion,validation_loader):
model.model[0].eval() model.eval()
total_loss = 0.0 total_loss = 0.0
total_acc = 0.0 total_acc = 0.0
with torch.no_grad(): with torch.no_grad():
for val_batch in validation_loader: for val_batch in validation_loader:
input_ids, att_mask ,labels,_ = val_batch input_ids, att_mask ,labels,_ = val_batch.values()
input_ids, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE) input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
outputs = model(input_ids,att_mask) outputs = model(input_ids,attention_mask=att_mask)
loss = criterion(outputs,labels) loss = criterion(outputs,labels)
total_loss += loss.item() total_loss += loss.item()
predictions = torch.argmax(outputs,dim=1) predictions = torch.argmax(outputs,dim=1)
@ -112,33 +126,48 @@ def generate_tokens(tokenizer,raw_data):
if __name__ == "__main__": if __name__ == "__main__":
# Initialize Bert Model with dropout probability and Num End Layers # Initialize Bert Model with dropout probability and Num End Layers
bert = BERT(0.1) mybert = CustomBert(0.1)
print("Bert Initialized")
# Set Max Epoch Amount # Set Max Epoch Amount
EPOCH = 50 EPOCH = 2
# Read Raw Data from csv and save as DataFrame # Read Raw Data from csv and save as DataFrame
df = pd.read_csv("./data/hack.csv",encoding="latin1") df = pd.read_csv("./data/hack.csv",encoding="latin1")
print("Raw Data read")
# Initialize BertTokenizer from Pretrained # Initialize BertTokenizer from Pretrained
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True)
print("Tokenizer Initialized")
#Split DataFrame into Train and Test Sets #Split DataFrame into Train and Test Sets
train,test = train_test_split(df,random_state=501,test_size=.2) train,test = train_test_split(df,random_state=501,test_size=.2)
print("Splitted Data in Train and Test Sets")
# Create Custom Datasets for Train and Test # Create Custom Datasets for Train and Test
train_data = SimpleHumorDataset(tokenizer,train) train_data = SimpleHumorDataset(tokenizer,train)
test_data = SimpleHumorDataset(tokenizer,test) test_data = SimpleHumorDataset(tokenizer,test)
print("Custom Datasets created")
# Initialize Dataloader with Train and Test Sets # Initialize Dataloader with Train and Test Sets
train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True) train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True)
test_loader = DataLoader(dataset=test_data,batch_size=len(test_data)) test_loader = DataLoader(dataset=test_data,batch_size=len(test_data))
print("DataLoaders created")
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate # Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
criterion_bce = nn.BCELoss() criterion_bce = nn.CrossEntropyLoss()
optimizer_adam = optim.Adam(bert.model[0].parameters(), lr = 1e-5) optimizer_adam = optim.Adam(mybert.parameters(), lr = 1e-5)
# Set Scheduler for dynamically Learning Rate adjustment
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
for epoch in range(EPOCH): for epoch in range(EPOCH):
print(f"For {epoch} the Scores are: ") print(f"For {epoch+1} the Scores are: ")
bert.train(optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader) training_loop(mybert,optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader)
bert.eval(criterion=criterion_bce,validation_loader=test_loader) # bert.eval_loop(criterion=criterion_bce,validation_loader=test_loader)
# scheduler.step()