help me, im under the water
parent
ed9be773e1
commit
19ab4fa45f
|
|
@ -7,7 +7,7 @@ from torch.utils.data import Dataset, DataLoader
|
|||
from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
# Bert imports
|
||||
from transformers import BertForSequenceClassification, BertTokenizer, AdamW
|
||||
from transformers import BertForSequenceClassification, BertTokenizer
|
||||
#Default imports (pandas, numpy, matplotlib, etc.)
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
|
@ -21,7 +21,7 @@ else:
|
|||
|
||||
|
||||
class SimpleHumorDataset(Dataset):
|
||||
def __init__(self,tokenizer,dataframe,max_length=256):
|
||||
def __init__(self,tokenizer,dataframe,max_length=280):
|
||||
super().__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
|
|
@ -55,36 +55,33 @@ class SimpleHumorDataset(Dataset):
|
|||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
|
||||
class CustomBert(nn.Module):
|
||||
def __init__(self,dropout):
|
||||
def __init__(self):
|
||||
super(CustomBert,self).__init__()
|
||||
|
||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.classifier = nn.Linear(2,2)
|
||||
self.sm = nn.Sigmoid()
|
||||
self.sm = nn.Softmax(dim=1)
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
seq_out = self.bfsc(input_ids, attention_mask = attention_mask)
|
||||
x = self.dropout(seq_out.logits)
|
||||
x = self.classifier(x)
|
||||
x = self.classifier(seq_out.logits)
|
||||
return self.sm(x)
|
||||
|
||||
def training_loop(model,criterion,optimizer,train_loader):
|
||||
model.to(DEVICE)
|
||||
torch.cuda.empty_cache()
|
||||
model.train()
|
||||
total_loss = 0
|
||||
for index, train_batch in enumerate(train_loader):
|
||||
|
||||
for train_batch in train_loader:
|
||||
# Set Gradient to Zero
|
||||
optimizer.zero_grad()
|
||||
# Unpack batch values and "push" it to GPU
|
||||
input_ids, att_mask, labels,_ = train_batch.values()
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||
# Feed Model with Data
|
||||
outputs = model(input_ids, attention_mask=att_mask)#, labels=labels)
|
||||
print(f"{index}::{len(train_loader)} -- Output Tensor: {outputs.shape}, Labels {labels.shape}")
|
||||
outputs = model(input_ids, attention_mask=att_mask)
|
||||
loss = criterion(outputs,labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
|
@ -93,6 +90,7 @@ def training_loop(model,criterion,optimizer,train_loader):
|
|||
return (total_loss/len(train_loader))
|
||||
|
||||
def eval_loop(model,criterion,validation_loader):
|
||||
torch.cuda.empty_cache()
|
||||
model.eval()
|
||||
total, correct = 0.0, 0.0
|
||||
total_loss = 0.0
|
||||
|
|
@ -104,25 +102,11 @@ def eval_loop(model,criterion,validation_loader):
|
|||
loss = criterion(outputs,labels)
|
||||
total_loss += loss.item()
|
||||
predictions = torch.argmax(outputs,1)
|
||||
print(outputs.squeeze(0))
|
||||
print(f"Prediction: {predictions}. VS Actual {labels}")
|
||||
print(predictions == labels)
|
||||
total += labels.size(0)
|
||||
correct += (predictions == labels).sum().item()
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total}%")
|
||||
return total_loss/len(validation_loader)
|
||||
|
||||
def generate_tokens(tokenizer,raw_data):
|
||||
return tokenizer.encode_plus(
|
||||
raw_data,
|
||||
add_special_tokens=True,
|
||||
padding="max_length",
|
||||
return_attention_mask = True,
|
||||
return_token_type_ids = False,
|
||||
max_length=128,
|
||||
truncation = True,
|
||||
return_tensors = 'pt'
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(501)
|
||||
|
|
@ -132,12 +116,13 @@ if __name__ == "__main__":
|
|||
# DROPOUT-PROBABILITY
|
||||
DROPOUT = 0.1
|
||||
# BATCHSIZE
|
||||
BATCH_SIZE = 8
|
||||
BATCH_SIZE = 32
|
||||
#LEARNING RATE
|
||||
LEARNING_RATE = 1e-5
|
||||
# Initialize Bert Model with dropout probability and Num End Layers
|
||||
mybert = CustomBert(DROPOUT)
|
||||
mybert = CustomBert()
|
||||
print("Bert Initialized")
|
||||
mybert.to(DEVICE)
|
||||
|
||||
|
||||
# Read Raw Data from csv and save as DataFrame
|
||||
|
|
@ -169,17 +154,16 @@ if __name__ == "__main__":
|
|||
|
||||
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
|
||||
criterion_bce = nn.CrossEntropyLoss()
|
||||
optimizer_adamW = optim.AdamW(mybert.parameters(), lr = LEARNING_RATE)
|
||||
optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
|
||||
|
||||
# Set Scheduler for dynamically Learning Rate adjustment
|
||||
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
|
||||
loss_values = []
|
||||
eval_values = []
|
||||
loss_values = np.zeros(EPOCH)
|
||||
eval_values = np.zeros(EPOCH)
|
||||
for epoch in range(EPOCH):
|
||||
print(f"For {epoch+1} the Scores are: ")
|
||||
loss_values.append(training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_bce,train_loader=train_loader))
|
||||
eval_values.append(eval_loop(mybert,criterion=criterion_bce,validation_loader=test_loader))
|
||||
# scheduler.step(min(eval_values))
|
||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_bce,train_loader=train_loader)
|
||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_bce,validation_loader=test_loader)
|
||||
|
||||
# Visualize Training Loss
|
||||
# plt.plot(loss_values)
|
||||
|
|
|
|||
Loading…
Reference in New Issue