now it kinda works
parent
9516e4317d
commit
1d69e0efdf
51
LSTM.py
51
LSTM.py
|
|
@ -6,6 +6,9 @@ from sklearn.metrics import mean_squared_error, r2_score
|
||||||
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||||
import time
|
import time
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from Datasets import GloveDataset as HumorDataset
|
||||||
|
import Datasets
|
||||||
|
import dataset_helper
|
||||||
|
|
||||||
|
|
||||||
class LSTMNetwork(nn.Module):
|
class LSTMNetwork(nn.Module):
|
||||||
|
|
@ -17,7 +20,8 @@ class LSTMNetwork(nn.Module):
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
lstm_out, _ = self.lstm(x)
|
lstm_out, _ = self.lstm(x)
|
||||||
return self.fc(self.dropout(lstm_out[:, -1, :]))
|
# print(lstm_out)
|
||||||
|
return self.fc(self.dropout(lstm_out))
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(predictions, labels):
|
def compute_metrics(predictions, labels):
|
||||||
|
|
@ -47,8 +51,8 @@ def train_model(model, train_loader, val_loader, test_loader, epochs=10, device=
|
||||||
|
|
||||||
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}", ncols=100):
|
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}", ncols=100):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
inputs = batch['input_ids'].to(device)
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
||||||
labels = batch['labels'].to(device)
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
||||||
outputs = model(inputs)
|
outputs = model(inputs)
|
||||||
loss = criterion(outputs.squeeze(), labels)
|
loss = criterion(outputs.squeeze(), labels)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
@ -65,8 +69,8 @@ def train_model(model, train_loader, val_loader, test_loader, epochs=10, device=
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch in val_loader:
|
for batch in val_loader:
|
||||||
inputs = batch['input_ids'].to(device)
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
||||||
labels = batch['labels'].to(device)
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
||||||
outputs = model(inputs)
|
outputs = model(inputs)
|
||||||
val_loss += criterion(outputs.squeeze(), labels).item()
|
val_loss += criterion(outputs.squeeze(), labels).item()
|
||||||
val_preds.extend(outputs.squeeze().cpu().numpy())
|
val_preds.extend(outputs.squeeze().cpu().numpy())
|
||||||
|
|
@ -78,8 +82,8 @@ def train_model(model, train_loader, val_loader, test_loader, epochs=10, device=
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for batch in test_loader:
|
for batch in test_loader:
|
||||||
inputs = batch['input_ids'].to(device)
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
||||||
labels = batch['labels'].to(device)
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
||||||
outputs = model(inputs)
|
outputs = model(inputs)
|
||||||
test_preds.extend(outputs.squeeze().cpu().numpy())
|
test_preds.extend(outputs.squeeze().cpu().numpy())
|
||||||
test_labels.extend(labels.cpu().numpy())
|
test_labels.extend(labels.cpu().numpy())
|
||||||
|
|
@ -101,7 +105,7 @@ def train_model(model, train_loader, val_loader, test_loader, epochs=10, device=
|
||||||
if test_r2 > best_test_r2:
|
if test_r2 > best_test_r2:
|
||||||
best_test_r2 = test_r2
|
best_test_r2 = test_r2
|
||||||
torch.save(model.state_dict(), "best_lstm_model.pth")
|
torch.save(model.state_dict(), "best_lstm_model.pth")
|
||||||
print(f"🚀 New best model saved (R2: {test_r2:.4f})")
|
print(f"New best model saved (R2: {test_r2:.4f})")
|
||||||
|
|
||||||
if avg_val_loss < best_val_loss:
|
if avg_val_loss < best_val_loss:
|
||||||
best_val_loss = avg_val_loss
|
best_val_loss = avg_val_loss
|
||||||
|
|
@ -109,25 +113,41 @@ def train_model(model, train_loader, val_loader, test_loader, epochs=10, device=
|
||||||
else:
|
else:
|
||||||
counter += 1
|
counter += 1
|
||||||
if counter >= patience:
|
if counter >= patience:
|
||||||
print("⛔ Early stopping triggered!")
|
print("Early stopping triggered!")
|
||||||
break
|
break
|
||||||
|
|
||||||
return history
|
return history
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
data_path = '/content/drive/MyDrive/Colab Notebooks/ANLP_WS24_CA2/data/embedded_padded'
|
input_dim = 128
|
||||||
train_dataset = torch.load(f'{data_path}/train.pt')
|
|
||||||
test_dataset = torch.load(f'{data_path}/test.pt')
|
|
||||||
val_dataset = torch.load(f'{data_path}/val.pt')
|
|
||||||
|
|
||||||
input_dim = 100
|
|
||||||
hidden_dim = 1024
|
hidden_dim = 1024
|
||||||
num_layers = 2
|
num_layers = 2
|
||||||
output_dim = 1
|
output_dim = 1
|
||||||
dropout = 0.2
|
dropout = 0.2
|
||||||
batch_size = 256
|
batch_size = 256
|
||||||
epochs = 5
|
epochs = 5
|
||||||
|
|
||||||
|
DATA_PATH = "data/hack.csv"
|
||||||
|
GLOVE_PATH = "data/glove.6b.100d.txt"
|
||||||
|
EMBEDDING_DIM = 100
|
||||||
|
TEST_SIZE = 0.1
|
||||||
|
VAL_SIZE = 0.1
|
||||||
|
params = {"max_len":128}
|
||||||
|
# data_path = 'data/embedded_padded'
|
||||||
|
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
||||||
|
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
||||||
|
|
||||||
|
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
||||||
|
|
||||||
|
# Aufteilen der Daten
|
||||||
|
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
||||||
|
|
||||||
|
# Dataset und DataLoader
|
||||||
|
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||||
|
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||||
|
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||||
|
|
||||||
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||||
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||||
|
|
@ -135,5 +155,4 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
model = LSTMNetwork(input_dim=input_dim, hidden_dim=hidden_dim, num_layers=num_layers, output_dim=output_dim, dropout=dropout).to(device)
|
model = LSTMNetwork(input_dim=input_dim, hidden_dim=hidden_dim, num_layers=num_layers, output_dim=output_dim, dropout=dropout).to(device)
|
||||||
|
|
||||||
history = train_model(model, train_loader, val_loader, test_loader, epochs=epochs, device=device)
|
history = train_model(model, train_loader, val_loader, test_loader, epochs=epochs, device=device)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue