Merge branch 'main' of https://gitty.informatik.hs-mannheim.de/3016498/ANLP_WS24_CA2
commit
299e01a820
|
|
@ -5,6 +5,40 @@ import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from nltk.tokenize import word_tokenize
|
from nltk.tokenize import word_tokenize
|
||||||
|
|
||||||
|
class TextRegDataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, texts, labels, word_index, max_len=50):
|
||||||
|
|
||||||
|
self.original_indices = labels.index.to_list()
|
||||||
|
|
||||||
|
self.texts = texts.reset_index(drop=True)
|
||||||
|
self.labels = labels.reset_index(drop=True)
|
||||||
|
self.word_index = word_index
|
||||||
|
self.max_len = max_len
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.texts)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
texts = self.texts[idx]
|
||||||
|
tokens = word_tokenize(texts.lower())
|
||||||
|
|
||||||
|
label = self.labels[idx]
|
||||||
|
|
||||||
|
# Tokenize and convert to indices
|
||||||
|
input_ids = [self.word_index.get(word, self.word_index['<UNK>']) for word in tokens]
|
||||||
|
|
||||||
|
# Pad or truncate to max_len
|
||||||
|
if len(input_ids) < self.max_len:
|
||||||
|
input_ids += [self.word_index['<PAD>']] * (self.max_len - len(input_ids))
|
||||||
|
else:
|
||||||
|
input_ids = input_ids[:self.max_len]
|
||||||
|
|
||||||
|
# Convert to PyTorch tensors
|
||||||
|
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
||||||
|
label = torch.tensor(label, dtype=torch.float)
|
||||||
|
|
||||||
|
return input_ids, label
|
||||||
|
|
||||||
class TextDataset(torch.utils.data.Dataset):
|
class TextDataset(torch.utils.data.Dataset):
|
||||||
def __init__(self, texts, labels, word_index, max_len=50):
|
def __init__(self, texts, labels, word_index, max_len=50):
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -5,7 +5,7 @@ from torch.utils.data import DataLoader
|
||||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||||
from tqdm import tqdm # Fortschrittsbalken-Bibliothek
|
from tqdm import tqdm # Fortschrittsbalken-Bibliothek
|
||||||
from dataset_generator import create_embedding_matrix, split_data
|
from dataset_generator import create_embedding_matrix, split_data
|
||||||
from HumorDataset import TextDataset
|
from HumorDataset import TextRegDataset
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import os
|
import os
|
||||||
|
|
@ -20,7 +20,7 @@ params = {
|
||||||
"learning_rate": 0.001,
|
"learning_rate": 0.001,
|
||||||
"epochs": 25,
|
"epochs": 25,
|
||||||
"glove_path": 'data/glove.6B.100d.txt', # Pfad zu GloVe
|
"glove_path": 'data/glove.6B.100d.txt', # Pfad zu GloVe
|
||||||
"max_len": 50,
|
"max_len": 280,
|
||||||
"test_size": 0.1,
|
"test_size": 0.1,
|
||||||
"val_size": 0.1,
|
"val_size": 0.1,
|
||||||
"patience": 5,
|
"patience": 5,
|
||||||
|
|
@ -171,9 +171,9 @@ visualize_data_distribution(y)
|
||||||
data_split = split_data(X, y, test_size=params["test_size"], val_size=params["val_size"])
|
data_split = split_data(X, y, test_size=params["test_size"], val_size=params["val_size"])
|
||||||
|
|
||||||
# Dataset und DataLoader
|
# Dataset und DataLoader
|
||||||
train_dataset = TextDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
train_dataset = TextRegDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||||
val_dataset = TextDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
val_dataset = TextRegDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||||
test_dataset = TextDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
test_dataset = TextRegDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||||
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
|
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
|
||||||
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
|
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
|
||||||
|
|
@ -187,7 +187,10 @@ model = EnhancedCNNRegressor(
|
||||||
num_filters=params["num_filters"],
|
num_filters=params["num_filters"],
|
||||||
embedding_matrix=embedding_matrix,
|
embedding_matrix=embedding_matrix,
|
||||||
dropout=params["dropout"]
|
dropout=params["dropout"]
|
||||||
).to(device)
|
)
|
||||||
|
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
criterion = nn.MSELoss()
|
criterion = nn.MSELoss()
|
||||||
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
|
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
|
||||||
|
|
@ -340,3 +343,15 @@ test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
|
||||||
test_mae = mean_absolute_error(test_labels, test_preds)
|
test_mae = mean_absolute_error(test_labels, test_preds)
|
||||||
test_r2 = r2_score(test_labels, test_preds)
|
test_r2 = r2_score(test_labels, test_preds)
|
||||||
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
||||||
|
|
||||||
|
|
||||||
|
# plot distribution of predicted values and true values
|
||||||
|
plt.figure(figsize=(10, 6))
|
||||||
|
plt.hist(test_labels, bins=20, color='skyblue', edgecolor='black', alpha=0.7, label='True Values')
|
||||||
|
plt.hist(test_preds, bins=20, color='salmon', edgecolor='black', alpha=0.7, label='Predicted Values')
|
||||||
|
plt.title('Distribution of Predicted and True Values')
|
||||||
|
plt.xlabel('Score')
|
||||||
|
plt.ylabel('Frequency')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
||||||
|
plt.show()
|
||||||
112
bert_no_ernie.py
112
bert_no_ernie.py
|
|
@ -4,7 +4,7 @@ import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import Dataset, DataLoader
|
||||||
# scikit-learn Imports
|
# scikit-learn Imports
|
||||||
# from sklearn.metrics import accuracy_score, confusion_matrix
|
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
# Bert imports
|
# Bert imports
|
||||||
from transformers import BertForSequenceClassification, AutoTokenizer
|
from transformers import BertForSequenceClassification, AutoTokenizer
|
||||||
|
|
@ -25,8 +25,8 @@ class SimpleHumorDataset(Dataset):
|
||||||
super(SimpleHumorDataset,self).__init__()
|
super(SimpleHumorDataset,self).__init__()
|
||||||
self.tokenizer = tokenizer
|
self.tokenizer = tokenizer
|
||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
self.text = dataframe['text'].to_list()
|
self.text = dataframe['text'].to_numpy()
|
||||||
self.labels = dataframe['is_humor'].to_list()
|
self.labels = dataframe['is_humor'].to_numpy()
|
||||||
|
|
||||||
def __getitem__(self,idx:int):
|
def __getitem__(self,idx:int):
|
||||||
text = self.text[idx]
|
text = self.text[idx]
|
||||||
|
|
@ -52,41 +52,58 @@ class SimpleHumorDataset(Dataset):
|
||||||
return len(self.labels)
|
return len(self.labels)
|
||||||
|
|
||||||
class CustomBert(nn.Module):
|
class CustomBert(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self,dropout):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
self.classifier = nn.Linear(2,2)
|
self.classifier = nn.Linear(2,2)
|
||||||
self.sm = nn.Softmax(dim=1)
|
# self.sm = nn.Softmax(dim=1)
|
||||||
|
|
||||||
def forward(self, input_ids, attention_mask):
|
def forward(self, input_ids, attention_mask):
|
||||||
seq_out = self.bfsc(input_ids, attention_mask = attention_mask)
|
seq_out = self.bfsc(input_ids, attention_mask = attention_mask)
|
||||||
x = self.classifier(seq_out.logits)
|
return self.classifier(self.dropout(seq_out[0]))
|
||||||
return self.sm(x)
|
|
||||||
|
|
||||||
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader):
|
|
||||||
|
def freeze_bert_params(self):
|
||||||
|
for param in self.bfsc.named_parameters():
|
||||||
|
param[1].requires_grad_(False)
|
||||||
|
|
||||||
|
def unfreeze_bert_params(self):
|
||||||
|
for param in self.bfsc.named_parameters():
|
||||||
|
param[1].requires_grad_(True)
|
||||||
|
|
||||||
|
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader,freeze_bert:bool):
|
||||||
model.train()
|
model.train()
|
||||||
total_loss = 0
|
if freeze_bert:
|
||||||
|
model.freeze_bert_params()
|
||||||
|
|
||||||
for train_batch in train_loader:
|
total_loss = 0
|
||||||
|
len_train_loader = len(train_loader)
|
||||||
|
for index,train_batch in enumerate(train_loader):
|
||||||
# Set Gradient to Zero
|
# Set Gradient to Zero
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
# Unpack batch values and "push" it to GPU
|
# Unpack batch values and "push" it to GPU
|
||||||
input_ids, att_mask, labels = train_batch.values()
|
input_ids, att_mask, labels = train_batch.values()
|
||||||
|
# print(f"{input_ids.shape}, {att_mask.shape}, {labels.shape}")
|
||||||
|
# print(f"Iteration {index} of {len_train_loader}")
|
||||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||||
# Feed Model with Data
|
# Feed Model with Data
|
||||||
outputs = model(input_ids, attention_mask=att_mask)
|
outputs = model(input_ids, attention_mask=att_mask)
|
||||||
|
# print(f"{model.bfsc.}")
|
||||||
|
# print(f"{outputs.shape}")
|
||||||
loss = criterion(outputs,labels)
|
loss = criterion(outputs,labels)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
total_loss+=loss.item()
|
total_loss+=loss.item()
|
||||||
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
|
print(f"Training Loss is {(total_loss/len(train_loader)):.4f}")
|
||||||
return (total_loss/len(train_loader))
|
return (total_loss/len(train_loader))
|
||||||
|
|
||||||
def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:DataLoader):
|
def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:DataLoader):
|
||||||
model.eval()
|
model.eval()
|
||||||
total, correct = 0.0, 0.0
|
total, correct = 0.0, 0.0
|
||||||
total_loss = 0.0
|
total_loss = 0.0
|
||||||
|
best_loss = 10.0
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for val_batch in validation_loader:
|
for val_batch in validation_loader:
|
||||||
input_ids, att_mask ,labels = val_batch.values()
|
input_ids, att_mask ,labels = val_batch.values()
|
||||||
|
|
@ -97,23 +114,50 @@ def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:D
|
||||||
predictions = torch.argmax(outputs,1)
|
predictions = torch.argmax(outputs,1)
|
||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predictions == labels).sum().item()
|
correct += (predictions == labels).sum().item()
|
||||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total*100}%")
|
if total_loss/len(validation_loader) < best_loss:
|
||||||
|
best_loss = total_loss/len(validation_loader)
|
||||||
|
torch.save(model,"best_bert_model")
|
||||||
|
print(f"Validation Loss: {total_loss/len(validation_loader):.4f} ### Test Accuracy {correct/total*100:.4f}%")
|
||||||
return total_loss/len(validation_loader)
|
return total_loss/len(validation_loader)
|
||||||
|
|
||||||
|
def test_loop(model:CustomBert, criterion:nn.CrossEntropyLoss, test_loader:DataLoader):
|
||||||
|
for batch in test_loader:
|
||||||
|
input_ids, att_mask, labels = batch.values()
|
||||||
|
input_ids, att_mask, labels = input_ids.to(DEVICE), att_mask.to(DEVICE), labels.to(DEVICE)
|
||||||
|
with torch.no_grad():
|
||||||
|
output = model(input_ids,att_mask)
|
||||||
|
output.detach().cpu().numpy()
|
||||||
|
labels.detach().cpu().numpy()
|
||||||
|
pred_flat = np.argmax(output,1).flatten()
|
||||||
|
print(accuracy_score(labels,pred_flat))
|
||||||
|
|
||||||
|
def performance_metrics(true_labels,predictions):
|
||||||
|
confusion_matrix(true_labels,predictions)
|
||||||
|
accuracy_score(true_labels,predictions)
|
||||||
|
f1_score(true_labels,predictions)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
torch.manual_seed(501)
|
|
||||||
# HYPERPARAMETERS
|
# HYPERPARAMETERS
|
||||||
# Set Max Epoch Amount
|
# Set Max Epoch Amount
|
||||||
EPOCH = 1
|
EPOCH = 10
|
||||||
# DROPOUT-PROBABILITY
|
# DROPOUT-PROBABILITY
|
||||||
DROPOUT = 0.1
|
DROPOUT = 0.1
|
||||||
# BATCHSIZE
|
# BATCHSIZE
|
||||||
BATCH_SIZE = 8
|
BATCH_SIZE = 16
|
||||||
#LEARNING RATE
|
#LEARNING RATE
|
||||||
LEARNING_RATE = 1e-5
|
LEARNING_RATE = 1e-5
|
||||||
|
# RANDOM SEED
|
||||||
|
RNDM_SEED = 501
|
||||||
|
|
||||||
|
torch.manual_seed(RNDM_SEED)
|
||||||
|
np.random.seed(RNDM_SEED)
|
||||||
|
torch.cuda.seed_all(RNDM_SEED)
|
||||||
|
|
||||||
# Initialize Bert Model with dropout probability and Num End Layers
|
# Initialize Bert Model with dropout probability and Num End Layers
|
||||||
mybert = CustomBert()
|
mybert = CustomBert(DROPOUT)
|
||||||
print("Bert Initialized")
|
print("Bert Initialized")
|
||||||
mybert.to(DEVICE)
|
mybert.to(DEVICE)
|
||||||
|
|
||||||
|
|
@ -122,27 +166,26 @@ if __name__ == "__main__":
|
||||||
df = pd.read_csv("./data/hack.csv",encoding="latin1")
|
df = pd.read_csv("./data/hack.csv",encoding="latin1")
|
||||||
print("Raw Data read")
|
print("Raw Data read")
|
||||||
|
|
||||||
|
|
||||||
# Initialize BertTokenizer from Pretrained
|
# Initialize BertTokenizer from Pretrained
|
||||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
|
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
|
||||||
print("Tokenizer Initialized")
|
print("Tokenizer Initialized")
|
||||||
|
|
||||||
# print(tokenizer(df['text'][0],padding=True,truncation=True,max_length=256))
|
|
||||||
#Split DataFrame into Train and Test Sets
|
#Split DataFrame into Train and Test Sets
|
||||||
train,test = train_test_split(df,random_state=501,test_size=.2)
|
train,test = train_test_split(df,random_state=501,test_size=.2)
|
||||||
print("Splitted Data in Train and Test Sets")
|
print("Splitted Data in Train and Test Sets")
|
||||||
|
test,val = train_test_split(test,random_state=501,test_size=.5)
|
||||||
|
|
||||||
# val = []
|
# val = []
|
||||||
# Create Custom Datasets for Train and Test
|
# Create Custom Datasets for Train and Test
|
||||||
train_data = SimpleHumorDataset(tokenizer,train)
|
train_data = SimpleHumorDataset(tokenizer,train)
|
||||||
# val_data = SimpleHumorDataset(tokenizer,val)
|
val_data = SimpleHumorDataset(tokenizer,val)
|
||||||
test_data = SimpleHumorDataset(tokenizer,test)
|
test_data = SimpleHumorDataset(tokenizer,test)
|
||||||
print("Custom Datasets created")
|
print("Custom Datasets created")
|
||||||
|
|
||||||
|
|
||||||
# Initialize Dataloader with Train and Test Sets
|
# Initialize Dataloader with Train and Test Sets
|
||||||
train_loader = DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)
|
train_loader = DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||||
# val_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
|
validation_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||||
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
||||||
print("DataLoaders created")
|
print("DataLoaders created")
|
||||||
|
|
||||||
|
|
@ -153,20 +196,23 @@ if __name__ == "__main__":
|
||||||
# Set Scheduler for dynamically Learning Rate adjustment
|
# Set Scheduler for dynamically Learning Rate adjustment
|
||||||
loss_values = np.zeros(EPOCH)
|
loss_values = np.zeros(EPOCH)
|
||||||
eval_values = np.zeros(EPOCH)
|
eval_values = np.zeros(EPOCH)
|
||||||
start = time.time()
|
freeze = False
|
||||||
for epoch in range(EPOCH):
|
|
||||||
|
|
||||||
|
for epoch in range(EPOCH):
|
||||||
|
start = time.time()
|
||||||
print(f"For {epoch+1} the Scores are: ")
|
print(f"For {epoch+1} the Scores are: ")
|
||||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader)
|
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader,freeze_bert=freeze)
|
||||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
|
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print((end-start),"seconds per epoch needed")
|
print((end-start),"seconds per epoch needed")
|
||||||
# Visualize Training Loss
|
# Visualize Training Loss
|
||||||
plt.plot(loss_values)
|
# plt.plot(loss_values)
|
||||||
plt.plot(eval_values)
|
# plt.plot(eval_values)
|
||||||
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
# plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||||
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
# plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||||
plt.title("Test Loss")
|
# plt.title("Test Loss")
|
||||||
plt.xlabel("Num Epochs")
|
# plt.xlabel("Num Epochs")
|
||||||
plt.ylabel("Total Loss of Epoch")
|
# plt.ylabel("Total Loss of Epoch")
|
||||||
plt.show()
|
# plt.show()
|
||||||
|
for epoch in range(EPOCH):
|
||||||
|
test_loop(mybert,criterion_cross_entropy,validation_loader)
|
||||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue