Merge branch 'main' of https://gitty.informatik.hs-mannheim.de/3016498/ANLP_WS24_CA2
commit
299e01a820
|
|
@ -5,6 +5,40 @@ import torch
|
|||
import numpy as np
|
||||
from nltk.tokenize import word_tokenize
|
||||
|
||||
class TextRegDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, texts, labels, word_index, max_len=50):
|
||||
|
||||
self.original_indices = labels.index.to_list()
|
||||
|
||||
self.texts = texts.reset_index(drop=True)
|
||||
self.labels = labels.reset_index(drop=True)
|
||||
self.word_index = word_index
|
||||
self.max_len = max_len
|
||||
|
||||
def __len__(self):
|
||||
return len(self.texts)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
texts = self.texts[idx]
|
||||
tokens = word_tokenize(texts.lower())
|
||||
|
||||
label = self.labels[idx]
|
||||
|
||||
# Tokenize and convert to indices
|
||||
input_ids = [self.word_index.get(word, self.word_index['<UNK>']) for word in tokens]
|
||||
|
||||
# Pad or truncate to max_len
|
||||
if len(input_ids) < self.max_len:
|
||||
input_ids += [self.word_index['<PAD>']] * (self.max_len - len(input_ids))
|
||||
else:
|
||||
input_ids = input_ids[:self.max_len]
|
||||
|
||||
# Convert to PyTorch tensors
|
||||
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
||||
label = torch.tensor(label, dtype=torch.float)
|
||||
|
||||
return input_ids, label
|
||||
|
||||
class TextDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, texts, labels, word_index, max_len=50):
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from torch.utils.data import DataLoader
|
|||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
from tqdm import tqdm # Fortschrittsbalken-Bibliothek
|
||||
from dataset_generator import create_embedding_matrix, split_data
|
||||
from HumorDataset import TextDataset
|
||||
from HumorDataset import TextRegDataset
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
|
|
@ -20,7 +20,7 @@ params = {
|
|||
"learning_rate": 0.001,
|
||||
"epochs": 25,
|
||||
"glove_path": 'data/glove.6B.100d.txt', # Pfad zu GloVe
|
||||
"max_len": 50,
|
||||
"max_len": 280,
|
||||
"test_size": 0.1,
|
||||
"val_size": 0.1,
|
||||
"patience": 5,
|
||||
|
|
@ -171,9 +171,9 @@ visualize_data_distribution(y)
|
|||
data_split = split_data(X, y, test_size=params["test_size"], val_size=params["val_size"])
|
||||
|
||||
# Dataset und DataLoader
|
||||
train_dataset = TextDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||
val_dataset = TextDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||
test_dataset = TextDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||
train_dataset = TextRegDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||
val_dataset = TextRegDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||
test_dataset = TextRegDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
|
||||
|
|
@ -187,7 +187,10 @@ model = EnhancedCNNRegressor(
|
|||
num_filters=params["num_filters"],
|
||||
embedding_matrix=embedding_matrix,
|
||||
dropout=params["dropout"]
|
||||
).to(device)
|
||||
)
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = model.to(device)
|
||||
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
|
||||
|
|
@ -340,3 +343,15 @@ test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
|
|||
test_mae = mean_absolute_error(test_labels, test_preds)
|
||||
test_r2 = r2_score(test_labels, test_preds)
|
||||
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
||||
|
||||
|
||||
# plot distribution of predicted values and true values
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.hist(test_labels, bins=20, color='skyblue', edgecolor='black', alpha=0.7, label='True Values')
|
||||
plt.hist(test_preds, bins=20, color='salmon', edgecolor='black', alpha=0.7, label='Predicted Values')
|
||||
plt.title('Distribution of Predicted and True Values')
|
||||
plt.xlabel('Score')
|
||||
plt.ylabel('Frequency')
|
||||
plt.legend()
|
||||
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
||||
plt.show()
|
||||
112
bert_no_ernie.py
112
bert_no_ernie.py
|
|
@ -4,7 +4,7 @@ import torch.nn as nn
|
|||
import torch.optim as optim
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
# scikit-learn Imports
|
||||
# from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
# Bert imports
|
||||
from transformers import BertForSequenceClassification, AutoTokenizer
|
||||
|
|
@ -25,8 +25,8 @@ class SimpleHumorDataset(Dataset):
|
|||
super(SimpleHumorDataset,self).__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
self.text = dataframe['text'].to_list()
|
||||
self.labels = dataframe['is_humor'].to_list()
|
||||
self.text = dataframe['text'].to_numpy()
|
||||
self.labels = dataframe['is_humor'].to_numpy()
|
||||
|
||||
def __getitem__(self,idx:int):
|
||||
text = self.text[idx]
|
||||
|
|
@ -52,41 +52,58 @@ class SimpleHumorDataset(Dataset):
|
|||
return len(self.labels)
|
||||
|
||||
class CustomBert(nn.Module):
|
||||
def __init__(self):
|
||||
def __init__(self,dropout):
|
||||
super().__init__()
|
||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.classifier = nn.Linear(2,2)
|
||||
self.sm = nn.Softmax(dim=1)
|
||||
# self.sm = nn.Softmax(dim=1)
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
seq_out = self.bfsc(input_ids, attention_mask = attention_mask)
|
||||
x = self.classifier(seq_out.logits)
|
||||
return self.sm(x)
|
||||
return self.classifier(self.dropout(seq_out[0]))
|
||||
|
||||
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader):
|
||||
|
||||
def freeze_bert_params(self):
|
||||
for param in self.bfsc.named_parameters():
|
||||
param[1].requires_grad_(False)
|
||||
|
||||
def unfreeze_bert_params(self):
|
||||
for param in self.bfsc.named_parameters():
|
||||
param[1].requires_grad_(True)
|
||||
|
||||
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader,freeze_bert:bool):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
if freeze_bert:
|
||||
model.freeze_bert_params()
|
||||
|
||||
for train_batch in train_loader:
|
||||
total_loss = 0
|
||||
len_train_loader = len(train_loader)
|
||||
for index,train_batch in enumerate(train_loader):
|
||||
# Set Gradient to Zero
|
||||
optimizer.zero_grad()
|
||||
# Unpack batch values and "push" it to GPU
|
||||
input_ids, att_mask, labels = train_batch.values()
|
||||
# print(f"{input_ids.shape}, {att_mask.shape}, {labels.shape}")
|
||||
# print(f"Iteration {index} of {len_train_loader}")
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||
# Feed Model with Data
|
||||
outputs = model(input_ids, attention_mask=att_mask)
|
||||
# print(f"{model.bfsc.}")
|
||||
# print(f"{outputs.shape}")
|
||||
loss = criterion(outputs,labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss+=loss.item()
|
||||
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
|
||||
print(f"Training Loss is {(total_loss/len(train_loader)):.4f}")
|
||||
return (total_loss/len(train_loader))
|
||||
|
||||
def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:DataLoader):
|
||||
model.eval()
|
||||
total, correct = 0.0, 0.0
|
||||
total_loss = 0.0
|
||||
best_loss = 10.0
|
||||
with torch.no_grad():
|
||||
for val_batch in validation_loader:
|
||||
input_ids, att_mask ,labels = val_batch.values()
|
||||
|
|
@ -97,23 +114,50 @@ def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:D
|
|||
predictions = torch.argmax(outputs,1)
|
||||
total += labels.size(0)
|
||||
correct += (predictions == labels).sum().item()
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total*100}%")
|
||||
if total_loss/len(validation_loader) < best_loss:
|
||||
best_loss = total_loss/len(validation_loader)
|
||||
torch.save(model,"best_bert_model")
|
||||
print(f"Validation Loss: {total_loss/len(validation_loader):.4f} ### Test Accuracy {correct/total*100:.4f}%")
|
||||
return total_loss/len(validation_loader)
|
||||
|
||||
def test_loop(model:CustomBert, criterion:nn.CrossEntropyLoss, test_loader:DataLoader):
|
||||
for batch in test_loader:
|
||||
input_ids, att_mask, labels = batch.values()
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE), att_mask.to(DEVICE), labels.to(DEVICE)
|
||||
with torch.no_grad():
|
||||
output = model(input_ids,att_mask)
|
||||
output.detach().cpu().numpy()
|
||||
labels.detach().cpu().numpy()
|
||||
pred_flat = np.argmax(output,1).flatten()
|
||||
print(accuracy_score(labels,pred_flat))
|
||||
|
||||
def performance_metrics(true_labels,predictions):
|
||||
confusion_matrix(true_labels,predictions)
|
||||
accuracy_score(true_labels,predictions)
|
||||
f1_score(true_labels,predictions)
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(501)
|
||||
|
||||
# HYPERPARAMETERS
|
||||
# Set Max Epoch Amount
|
||||
EPOCH = 1
|
||||
EPOCH = 10
|
||||
# DROPOUT-PROBABILITY
|
||||
DROPOUT = 0.1
|
||||
# BATCHSIZE
|
||||
BATCH_SIZE = 8
|
||||
BATCH_SIZE = 16
|
||||
#LEARNING RATE
|
||||
LEARNING_RATE = 1e-5
|
||||
# RANDOM SEED
|
||||
RNDM_SEED = 501
|
||||
|
||||
torch.manual_seed(RNDM_SEED)
|
||||
np.random.seed(RNDM_SEED)
|
||||
torch.cuda.seed_all(RNDM_SEED)
|
||||
|
||||
# Initialize Bert Model with dropout probability and Num End Layers
|
||||
mybert = CustomBert()
|
||||
mybert = CustomBert(DROPOUT)
|
||||
print("Bert Initialized")
|
||||
mybert.to(DEVICE)
|
||||
|
||||
|
|
@ -122,27 +166,26 @@ if __name__ == "__main__":
|
|||
df = pd.read_csv("./data/hack.csv",encoding="latin1")
|
||||
print("Raw Data read")
|
||||
|
||||
|
||||
# Initialize BertTokenizer from Pretrained
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
|
||||
print("Tokenizer Initialized")
|
||||
|
||||
# print(tokenizer(df['text'][0],padding=True,truncation=True,max_length=256))
|
||||
#Split DataFrame into Train and Test Sets
|
||||
train,test = train_test_split(df,random_state=501,test_size=.2)
|
||||
print("Splitted Data in Train and Test Sets")
|
||||
test,val = train_test_split(test,random_state=501,test_size=.5)
|
||||
|
||||
# val = []
|
||||
# Create Custom Datasets for Train and Test
|
||||
train_data = SimpleHumorDataset(tokenizer,train)
|
||||
# val_data = SimpleHumorDataset(tokenizer,val)
|
||||
val_data = SimpleHumorDataset(tokenizer,val)
|
||||
test_data = SimpleHumorDataset(tokenizer,test)
|
||||
print("Custom Datasets created")
|
||||
|
||||
|
||||
# Initialize Dataloader with Train and Test Sets
|
||||
train_loader = DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||
# val_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||
validation_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
||||
print("DataLoaders created")
|
||||
|
||||
|
|
@ -153,20 +196,23 @@ if __name__ == "__main__":
|
|||
# Set Scheduler for dynamically Learning Rate adjustment
|
||||
loss_values = np.zeros(EPOCH)
|
||||
eval_values = np.zeros(EPOCH)
|
||||
start = time.time()
|
||||
for epoch in range(EPOCH):
|
||||
freeze = False
|
||||
|
||||
for epoch in range(EPOCH):
|
||||
start = time.time()
|
||||
print(f"For {epoch+1} the Scores are: ")
|
||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader)
|
||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader,freeze_bert=freeze)
|
||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
|
||||
end = time.time()
|
||||
print((end-start),"seconds per epoch needed")
|
||||
end = time.time()
|
||||
print((end-start),"seconds per epoch needed")
|
||||
# Visualize Training Loss
|
||||
plt.plot(loss_values)
|
||||
plt.plot(eval_values)
|
||||
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||
plt.title("Test Loss")
|
||||
plt.xlabel("Num Epochs")
|
||||
plt.ylabel("Total Loss of Epoch")
|
||||
plt.show()
|
||||
# plt.plot(loss_values)
|
||||
# plt.plot(eval_values)
|
||||
# plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||
# plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||
# plt.title("Test Loss")
|
||||
# plt.xlabel("Num Epochs")
|
||||
# plt.ylabel("Total Loss of Epoch")
|
||||
# plt.show()
|
||||
for epoch in range(EPOCH):
|
||||
test_loop(mybert,criterion_cross_entropy,validation_loader)
|
||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue