lstm update
parent
6c859703fd
commit
340d915a29
88
lstm_1b.py
88
lstm_1b.py
|
|
@ -28,13 +28,7 @@ class ImprovedLSTMBinaryClassifier(nn.Module):
|
|||
dropout=dropout,
|
||||
bidirectional=False)
|
||||
self.layer_norm = nn.LayerNorm(hidden_dim)
|
||||
|
||||
# Zusätzliche Fully Connected Layers ohne ReLU
|
||||
self.fc1 = nn.Linear(hidden_dim, 128)
|
||||
self.fc2 = nn.Linear(128, 64)
|
||||
self.fc3 = nn.Linear(64, 32)
|
||||
self.fc4 = nn.Linear(32, 1)
|
||||
|
||||
self.fc = nn.Linear(hidden_dim, 1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
|
|
@ -43,43 +37,11 @@ class ImprovedLSTMBinaryClassifier(nn.Module):
|
|||
lstm_out = self.dropout(lstm_out)
|
||||
pooled = lstm_out[:, -1, :] # Letztes verstecktes Zustand
|
||||
normalized = self.layer_norm(pooled)
|
||||
|
||||
# Mehrere Fully Connected Schichten
|
||||
x = self.fc1(normalized)
|
||||
x = self.fc2(x)
|
||||
x = self.fc3(x)
|
||||
x = self.fc4(x)
|
||||
|
||||
return self.sigmoid(x)
|
||||
logits = self.fc(normalized)
|
||||
return self.sigmoid(logits)
|
||||
|
||||
# Training und Evaluation
|
||||
if __name__ == "__main__":
|
||||
# Daten laden (Annahme: Eingebettete Daten sind bereits vorbereitet)
|
||||
data_path = '/content/drive/MyDrive/Colab Notebooks/ANLP_WS24_CA2/data/embedded_padded'
|
||||
train_dataset = torch.load(data_path + '/train.pt')
|
||||
test_dataset = torch.load(data_path + '/test.pt')
|
||||
val_dataset = torch.load(data_path + '/val.pt')
|
||||
|
||||
# Hyperparameter
|
||||
input_dim = 100
|
||||
hidden_dim = 256
|
||||
num_layers = 2
|
||||
dropout = 0.3
|
||||
batch_size = 64
|
||||
|
||||
# DataLoader
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
# Modell initialisieren
|
||||
model = ImprovedLSTMBinaryClassifier(
|
||||
input_dim=input_dim,
|
||||
hidden_dim=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
dropout=dropout
|
||||
).to(device)
|
||||
|
||||
def train_model(model, train_loader, val_loader, test_loader, epochs=10):
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
|
||||
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2, verbose=True)
|
||||
|
|
@ -88,10 +50,8 @@ if __name__ == "__main__":
|
|||
best_test_accuracy = 0
|
||||
patience = 3
|
||||
counter = 0
|
||||
|
||||
history = {'train_loss': [], 'val_loss': [], 'test_acc': [], 'test_f1': []}
|
||||
|
||||
epochs = 5
|
||||
for epoch in range(epochs):
|
||||
# Training
|
||||
model.train()
|
||||
|
|
@ -107,7 +67,7 @@ if __name__ == "__main__":
|
|||
loss = criterion(outputs, labels)
|
||||
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(model.parameters(), 1)
|
||||
nn.utils.clip_grad_norm_(model.parameters(), 5) # Gradient Clipping
|
||||
optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
|
|
@ -171,3 +131,41 @@ if __name__ == "__main__":
|
|||
if counter >= patience:
|
||||
print("⛔ Early Stopping ausgelöst!")
|
||||
break
|
||||
|
||||
return history
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Daten laden (Annahme: Eingebettete Daten sind bereits vorbereitet)
|
||||
data_path = '/content/drive/MyDrive/Colab Notebooks/ANLP_WS24_CA2/data/embedded_padded'
|
||||
train_dataset = torch.load(data_path + '/train.pt')
|
||||
test_dataset = torch.load(data_path + '/test.pt')
|
||||
val_dataset = torch.load(data_path + '/val.pt')
|
||||
|
||||
# Hyperparameter
|
||||
input_dim = 100
|
||||
hidden_dim = 256
|
||||
num_layers = 2
|
||||
dropout = 0.3
|
||||
batch_size = 64
|
||||
|
||||
# DataLoader
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
# Modell initialisieren
|
||||
model = ImprovedLSTMBinaryClassifier(
|
||||
input_dim=input_dim,
|
||||
hidden_dim=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
dropout=dropout
|
||||
).to(device)
|
||||
|
||||
# Training starten
|
||||
history = train_model(
|
||||
model,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
epochs=5
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in New Issue