added grid search

main
Felix Jan Michael Mucha 2025-02-16 14:21:11 +01:00
parent e9e2bf1b8a
commit 3ad2d37ea2
2 changed files with 175 additions and 98 deletions

125
BERT.py
View File

@ -9,6 +9,7 @@ from transformers import BertForSequenceClassification, AutoTokenizer
import numpy as np
from datetime import datetime
import json
import itertools
import Datasets
import dataset_helper
@ -52,18 +53,26 @@ class CustomBert(nn.Module):
if __name__ == '__main__':
# Hyperparameter und Konfigurationen
params = {
# Config
"max_len": 128,
# Training
"epochs": 1,
"patience": 7,
"batch_size": 32,
"learning_rate": 1e-6,
"weight_decay": 5e-4 ,
"epochs": [1],
"patience": [7],
"learning_rate": [1e-5, 1e-6],
"weight_decay": [5e-4],
# Model
"dropout": 0.6
"dropout": [0.6]
}
# Generate permutations of hyperparameters
keys, values = zip(*params.items())
grid_params = [dict(zip(keys, v)) for v in itertools.product(*values)]
best_params = {}
best_params_rmse = -1
# Example usage of grid_params
# for param_set in grid_params:
# print(param_set)
print('Number of grid_params:', len(grid_params))
# Configs
GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv'
@ -72,7 +81,11 @@ if __name__ == '__main__':
TEST_SIZE = 0.1
VAL_SIZE = 0.1
N_MODELS = 2
MAX_LEN = 280
BATCH_SIZE = 32
N_MODELS = 1
USE_GIRD_SEARCH = True
models = []
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
@ -91,17 +104,29 @@ if __name__ == '__main__':
print("Tokenizer Initialized")
# Dataset und DataLoader
train_dataset = Datasets.BertDataset(tokenizer, data_split['train']['X'], data_split['train']['y'], max_len=params["max_len"])
val_dataset = Datasets.BertDataset(tokenizer, data_split['val']['X'], data_split['val']['y'], max_len=params["max_len"])
test_dataset = Datasets.BertDataset(tokenizer, data_split['test']['X'], data_split['test']['y'], max_len=params["max_len"])
train_dataset = Datasets.BertDataset(tokenizer, data_split['train']['X'], data_split['train']['y'], max_len=MAX_LEN)
val_dataset = Datasets.BertDataset(tokenizer, data_split['val']['X'], data_split['val']['y'], max_len=MAX_LEN)
test_dataset = Datasets.BertDataset(tokenizer, data_split['test']['X'], data_split['test']['y'], max_len=MAX_LEN)
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=params["batch_size"], shuffle=False)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
subset_size = len(train_dataset) // N_MODELS
device = ml_helper.get_device(verbose=True, include_mps=False)
# assert if N_MODLES > 1, than grid_params should be len 1
if N_MODELS > 1 and len(grid_params) > 1 or N_MODELS > 1 and USE_GIRD_SEARCH:
raise ValueError("If N_MODELS > 1, than grid_params should be len 1")
if not USE_GIRD_SEARCH:
print('Using best params')
# load best params
params_name = f'models/best_params_BERT.json'
with open(params_name, 'r') as f:
best_params = json.load(f)
grid_params = [best_params]
for i in range(N_MODELS):
model_name = f'BERT.pt'
hist_name = f'BERT_history'
@ -112,46 +137,60 @@ if __name__ == '__main__':
subset_indices = dataset_helper.ensemble_data_idx(train_dataset.labels, N_MODELS, i, methods='bootstrap')
train_dataset_sub = Subset(train_dataset, subset_indices)
train_loader = DataLoader(train_dataset_sub, batch_size=params["batch_size"], shuffle=True)
train_loader = DataLoader(train_dataset_sub, batch_size=BATCH_SIZE, shuffle=True)
for para_idx, params in enumerate(grid_params):
if len(grid_params) > 1:
model_name = f'BERT_{i}_param_{para_idx}.pt'
hist_name = f'BERT_{i}_param_{para_idx}_history'
model = CustomBert(dropout=params["dropout"])
model = model.to(device)
model = CustomBert(dropout=params["dropout"])
model = model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
hist = ml_history.History()
hist = ml_history.History()
# Training und Validierung
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"], bert_freeze=FREEZE_BERT, is_bert=True)
# Training und Validierung
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"], bert_freeze=FREEZE_BERT, is_bert=True)
val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist, is_bert=True)
val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist, is_bert=True)
early_stopping(val_rmse, model)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
early_stopping(val_rmse, model)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
# Load best model
model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False))
models.append(model)
# Load best model
model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False))
models.append(model)
# Test Evaluation
test_labels, test_preds = ml_train.test_loop(model, test_loader, device, is_bert=True)
# Test Evaluation
test_labels, test_preds = ml_train.test_loop(model, test_loader, device, is_bert=True)
hist.add_test_results(test_labels, test_preds)
hist.add_test_results(test_labels, test_preds)
# save training history
hist.save_history(hist_name, timestamp)
# save training history
hist.save_history(hist_name, timestamp)
# RMSE, MAE und R²-Score für das Test-Set
test_mae = mean_absolute_error(test_labels, test_preds)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
# RMSE, MAE und R²-Score für das Test-Set
test_mae = mean_absolute_error(test_labels, test_preds)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
if test_rmse > best_params_rmse:
best_params_rmse = test_rmse
best_params = params
if len(grid_params) > 1:
best_params_name = f'models/best_params_BERT.json'
with open(best_params_name, 'w') as f:
json.dump(best_params, f)
if N_MODELS >1:

View File

@ -9,6 +9,7 @@ from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
from datetime import datetime
import json
import itertools
import Datasets
import dataset_helper
@ -108,21 +109,28 @@ class TransformerBinaryClassifier(nn.Module):
if __name__ == '__main__':
# Hyperparameter und Konfigurationen
params = {
# Config
"max_len": 280,
# Training
"epochs": 1,
"patience": 7,
"batch_size": 32,
"learning_rate": 1e-4, # 1e-4
"weight_decay": 5e-4 ,
"epochs": [1],
"patience": [7],
"learning_rate": [1e-4], # 1e-4
"weight_decay": [5e-4],
# Model
'nhead': 2, # 5
"dropout": 0.2,
'hiden_dim': 2048,
'num_layers': 6
'nhead': [2], # 5
"dropout": [0.2],
'hiden_dim': [1024, 2048],
'num_layers': [6]
}
# Generate permutations of hyperparameters
keys, values = zip(*params.items())
grid_params = [dict(zip(keys, v)) for v in itertools.product(*values)]
best_params = {}
best_params_rmse = -1
# Example usage of grid_params
# for param_set in grid_params:
# print(param_set)
print('Number of grid_params:', len(grid_params))
# Configs
GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv'
@ -130,7 +138,11 @@ if __name__ == '__main__':
TEST_SIZE = 0.1
VAL_SIZE = 0.1
N_MODELS = 2
MAX_LEN = 280
BATCH_SIZE = 32
N_MODELS = 1
USE_GIRD_SEARCH = True
models = []
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
@ -145,17 +157,29 @@ if __name__ == '__main__':
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
# Dataset und DataLoader
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=MAX_LEN)
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=MAX_LEN)
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=MAX_LEN)
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=params["batch_size"], shuffle=False)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
subset_size = len(train_dataset) // N_MODELS
device = ml_helper.get_device(verbose=True, include_mps=False)
# assert if N_MODLES > 1, than grid_params should be len 1
if N_MODELS > 1 and len(grid_params) > 1 or N_MODELS > 1 and USE_GIRD_SEARCH:
raise ValueError("If N_MODELS > 1, than grid_params should be len 1")
if not USE_GIRD_SEARCH:
print('Using best params')
# load best params
params_name = f'models/best_params_Transformer.json'
with open(params_name, 'r') as f:
best_params = json.load(f)
grid_params = [best_params]
for i in range(N_MODELS):
model_name = f'Transformer.pt'
hist_name = f'Transformer_history'
@ -166,53 +190,67 @@ if __name__ == '__main__':
subset_indices = dataset_helper.ensemble_data_idx(train_dataset.labels, N_MODELS, i, methods='bootstrap')
train_dataset_sub = Subset(train_dataset, subset_indices)
train_loader = DataLoader(train_dataset_sub, batch_size=params["batch_size"], shuffle=True)
train_loader = DataLoader(train_dataset_sub, batch_size=BATCH_SIZE, shuffle=True)
# Modell initialisieren
model = TransformerBinaryClassifier(
embeddings=embedding_matrix,
nhead=params['nhead'],
dim_feedforward=params['hiden_dim'],
num_layers=params['num_layers'],
positional_dropout=params["dropout"],
classifier_dropout=params["dropout"],
)
model = model.to(device)
for para_idx, params in enumerate(grid_params):
if len(grid_params) > 1:
model_name = f'Transformer_{i}_param_{para_idx}.pt'
hist_name = f'Transformer_{i}_param_{para_idx}_history'
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"]) #, weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
# Modell initialisieren
model = TransformerBinaryClassifier(
embeddings=embedding_matrix,
nhead=params['nhead'],
dim_feedforward=params['hiden_dim'],
num_layers=params['num_layers'],
positional_dropout=params["dropout"],
classifier_dropout=params["dropout"],
)
model = model.to(device)
hist = ml_history.History()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"]) #, weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
# Training und Validierung
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"])
hist = ml_history.History()
val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist)
# Training und Validierung
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"])
early_stopping(val_rmse, model)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist)
# Load best model
model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False))
models.append(model)
# Test Evaluation
test_labels, test_preds = ml_train.test_loop(model, test_loader, device)
early_stopping(val_rmse, model)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
hist.add_test_results(test_labels, test_preds)
# Load best model
model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False))
models.append(model)
# Test Evaluation
test_labels, test_preds = ml_train.test_loop(model, test_loader, device)
# save training history
hist.save_history(hist_name, timestamp)
hist.add_test_results(test_labels, test_preds)
# RMSE, MAE und R²-Score für das Test-Set
test_mae = mean_absolute_error(test_labels, test_preds)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
# save training history
hist.save_history(hist_name, timestamp)
# RMSE, MAE und R²-Score für das Test-Set
test_mae = mean_absolute_error(test_labels, test_preds)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
if test_rmse > best_params_rmse:
best_params_rmse = test_rmse
best_params = params
if len(grid_params) > 1:
best_params_name = f'models/best_params_Transformer.json'
with open(best_params_name, 'w') as f:
json.dump(best_params, f)
if N_MODELS >1:
# Ensemble Prediction