diff --git a/bert_no_ernie.py b/bert_no_ernie.py new file mode 100644 index 0000000..2074222 --- /dev/null +++ b/bert_no_ernie.py @@ -0,0 +1,144 @@ +# PyTorch Imports +import torch +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import Dataset, DataLoader +# scikit-learn Imports +from sklearn.metrics import accuracy_score, confusion_matrix +from sklearn.model_selection import train_test_split +#Gensim Imports +import gensim +# Bert improts +from transformers import BertForSequenceClassification, BertTokenizer, BertPreTrainedModel, AdamW +#Default imports (pandas, numpy, matplotlib, etc.) +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt + +## Select Device +if torch.cuda.is_available(): + DEVICE = torch.device("cuda") +else: + DEVICE = torch.device("cpu") + + +class SimpleHumorDataset(Dataset): + def __init__(self,tokenizer,dataframe,max_length=256): + super().__init__() + self.tokenizer = tokenizer + self.max_length = max_length + self.text = dataframe['text'].tolist() + self.labels = dataframe['is_humor'].tolist() + def __getitem__(self,idx): + text = self.text + labels = self.labels + encoding = self.tokenizer.encode_plus( + text, + add_special_tokens=True, + padding="max_length", + trunction = True, + return_attention_mask = True, + return_token_type_ids = False, + max_length=self.max_length, + truncation = True, + return_tensors = 'pt' + ) + input_ids = encoding['input_ids'].flatten() + attention_mask = encoding['attention_mask'].flatten() + + return { + 'input_ids': torch.as_tensor(input_ids,dtype=torch.long), + 'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long), + 'labels':torch.as_tensor(self.labels,dtype=torch.long), + 'text':text + } + + def __len__(self): + return len(self.labels) + + +class BERT(nn.Module): + def __init__(self,dropout,num_layers=2): + super().__init__() + self.model = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"), + self.ln1 = nn.Linear(768,num_layers), + self.dropout = nn.Dropout(dropout), + self.sm1 = nn.Sigmoid() + + def forward(self,input_ids,attention_mask): + return self.sm1(self.dropout(self.ln1(self.model[0](input_ids,attention_mask)))) + # return self.model(input_ids) + + def train(self,criterion,optimizer,train_loader): + self.model[0].train() + total_loss = 0 + for train_batch in train_loader: + optimizer.zero_grad() + input_ids, att_mask, labels,_ = train_batch + outputs = self.forward(input_ids,att_mask) + loss = criterion(outputs,labels) + loss.backward() + optimizer.step() + total_loss+=loss.item() + print(f"Total Loss is {(total_loss/len(train_loader)):.4f}") + + def eval(model,criterion,validation_loader): + model.model[0].eval() + total_loss = 0.0 + total_acc = 0.0 + with torch.no_grad(): + for val_batch in validation_loader: + input_ids, att_mask ,labels,_ = val_batch + input_ids, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE) + outputs = model(input_ids,att_mask) + loss = criterion(outputs,labels) + total_loss += loss.item() + predictions = torch.argmax(outputs,dim=1) + total_acc += (predictions == labels).sum().item() + print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {total_acc/len(validation_loader)*100}%") + +def generate_tokens(tokenizer,raw_data): + return tokenizer.encode_plus( + raw_data, + add_special_tokens=True, + padding="max_length", + return_attention_mask = True, + return_token_type_ids = False, + max_length=128, + truncation = True, + return_tensors = 'pt' + ) + +if __name__ == "__main__": + + # Initialize Bert Model with dropout probability and Num End Layers + bert = BERT(0.1) + + # Set Max Epoch Amount + EPOCH = 50 + + # Read Raw Data from csv and save as DataFrame + df = pd.read_csv("./data/hack.csv",encoding="latin1") + + # Initialize BertTokenizer from Pretrained + tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True) + + #Split DataFrame into Train and Test Sets + train,test = train_test_split(df,random_state=501,test_size=.2) + + # Create Custom Datasets for Train and Test + train_data = SimpleHumorDataset(tokenizer,train) + test_data = SimpleHumorDataset(tokenizer,test) + + # Initialize Dataloader with Train and Test Sets + train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True) + test_loader = DataLoader(dataset=test_data,batch_size=len(test_data)) + + # Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate + criterion_bce = nn.BCELoss() + optimizer_adam = optim.Adam(bert.model[0].parameters(), lr = 1e-5) + + for epoch in range(EPOCH): + print(f"For {epoch} the Scores are: ") + bert.train(optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader) + bert.eval(criterion=criterion_bce,validation_loader=test_loader) \ No newline at end of file