Merge branch 'main' of https://gitty.informatik.hs-mannheim.de/3016498/ANLP_WS24_CA2
commit
8097362c61
|
|
@ -1,3 +1,6 @@
|
|||
# Ignore pycache directory
|
||||
__pycache__/
|
||||
|
||||
# Ignore virtual environment directory
|
||||
.venv/
|
||||
|
||||
|
|
@ -18,3 +21,6 @@ plots/
|
|||
# Ignore plot file
|
||||
*.png
|
||||
*.jpg
|
||||
|
||||
# Ignore everything with delete_me in name
|
||||
*delete_me*
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
This file contains the HumorDataset class.
|
||||
"""
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class HumorDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, data, labels, vocab_size=0, emb_dim=None):
|
||||
self.original_indices = labels.index.to_list()
|
||||
|
||||
self.data = data
|
||||
self.labels = labels.reset_index(drop=True)
|
||||
self.vocab_size = vocab_size
|
||||
self.emb_dim = emb_dim
|
||||
|
||||
# TODO: bug fix
|
||||
self.shape = self.get_shape()
|
||||
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = {'input_ids': torch.tensor(self.data[idx], dtype=torch.float)}
|
||||
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.float)
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
def get_single_shape(self, data):
|
||||
shape_data = None
|
||||
if type(data) == list:
|
||||
shape_data = len(data[0])
|
||||
elif type(data) == torch.Tensor:
|
||||
shape_data = data[0].shape
|
||||
elif type(data) == np.ndarray:
|
||||
shape_data = data[0].shape
|
||||
return shape_data
|
||||
|
||||
def get_shape(self):
|
||||
shape_data = self.get_single_shape(self.data)
|
||||
shape_labels = self.get_single_shape(self.labels)
|
||||
return shape_data, shape_labels
|
||||
|
||||
11
README.md
11
README.md
|
|
@ -4,6 +4,17 @@
|
|||
|
||||
|
||||
|
||||
## TODOS
|
||||
data
|
||||
- maybe buffer zone between good and bad jokes (trade off would be less data)
|
||||
- maybe not bineary classification
|
||||
- maybe change to humor detection (more data available)
|
||||
|
||||
|
||||
- dataset shape doesnt work correctly
|
||||
|
||||
- history: integrate validation loss
|
||||
|
||||
## Data
|
||||
|
||||
|
||||
|
|
|
|||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -914,7 +914,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.3"
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
|||
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1,123 @@
|
|||
"""
|
||||
This file contains the dataset generation and preprocessing.
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
from nltk.tokenize import word_tokenize
|
||||
import gensim
|
||||
import torch
|
||||
import os
|
||||
|
||||
from HumorDataset import HumorDataset
|
||||
|
||||
def get_embedding_idx(model, word):
|
||||
if word in model.wv:
|
||||
return model.wv.key_to_index[word]
|
||||
else:
|
||||
return unk_index
|
||||
|
||||
def get_embedding_vector(model, word):
|
||||
if word in model.wv:
|
||||
return model.wv[word]
|
||||
else:
|
||||
return np.zeros(model.vector_size)
|
||||
|
||||
def encode_tokens(tokens, vector=False):
|
||||
if vector:
|
||||
return [get_embedding_vector(model_embedding, token) for token in tokens]
|
||||
else:
|
||||
return [get_embedding_idx(model_embedding, token) for token in tokens]
|
||||
|
||||
def pad_sequences(sequences, max_len, pad_index):
|
||||
return np.array([np.pad(seq, (0, max_len - len(seq)), mode='constant', constant_values=pad_index) if len(seq) < max_len else seq[:max_len] for seq in sequences])
|
||||
|
||||
|
||||
def split_data(X, y, test_size=0.1, val_size=0.1):
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size + val_size, random_state=42)
|
||||
val_split_ratio = val_size / (val_size + test_size)
|
||||
X_test, X_val, y_test, y_val = train_test_split(X_train, y_train, test_size=val_split_ratio, random_state=42)
|
||||
|
||||
ret_dict = {
|
||||
'train': {'X': X_train, 'y': y_train},
|
||||
'test': {'X': X_test, 'y': y_test},
|
||||
'val': {'X': X_val, 'y': y_val}
|
||||
}
|
||||
return ret_dict
|
||||
|
||||
def save_data(data_dict, path, prefix, vocab_size=0, emb_dim=None):
|
||||
if not os.path.exists(path):
|
||||
print('Creating directory:', path)
|
||||
os.makedirs(path)
|
||||
print('saving data into:', path)
|
||||
for key, value in data_dict.items():
|
||||
# tansform to Dataset
|
||||
dataset = HumorDataset(value['X'], value['y'], vocab_size, emb_dim)
|
||||
# save dataset
|
||||
torch.save(dataset, path + prefix + key + '.pt')
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Load the data from csv
|
||||
df = pd.read_csv('data/hack.csv')
|
||||
print(df.shape)
|
||||
|
||||
df = df.dropna(subset=['humor_rating'])
|
||||
|
||||
# find median of humor_rating
|
||||
median_rating = df['humor_rating'].median()
|
||||
#print('median and therefore middle of humor_rating:', median_rating)
|
||||
|
||||
df['y'] = df['humor_rating'] > median_rating
|
||||
|
||||
# transfrom data into dataset
|
||||
X = df['text']
|
||||
y = df['y']
|
||||
|
||||
# Tokenize the data with nltk
|
||||
tokens = [word_tokenize(text.lower()) for text in X]
|
||||
|
||||
vocab_size = len(set([word for sentence in tokens for word in sentence]))
|
||||
print('vocab size:', vocab_size)
|
||||
|
||||
# Pad the sequences
|
||||
# NOTE: Info comes from data explore notebook: 280 is max length,
|
||||
# 139 contains 80% and 192 contains 95% of the data
|
||||
max_len = 280
|
||||
padded_indices = pad_sequences(tokens, max_len=max_len, pad_index='<PAD>')
|
||||
|
||||
# split data into train, test, and validation
|
||||
data_dict = split_data(padded_indices, y)
|
||||
|
||||
# TODO: test gloVe embeddings
|
||||
# Embed the data with word2vec
|
||||
model_embedding = gensim.models.Word2Vec(tokens, window=5, min_count=1, workers=4)
|
||||
|
||||
# Add a special token for out-of-vocabulary words
|
||||
model_embedding.wv.add_vector('<UNK>', np.zeros(model_embedding.vector_size))
|
||||
unk_index = model_embedding.wv.key_to_index['<UNK>']
|
||||
|
||||
# Add padding index for padding
|
||||
model_embedding.wv.add_vector('<PAD>', np.zeros(model_embedding.vector_size))
|
||||
pad_index = model_embedding.wv.key_to_index['<PAD>']
|
||||
|
||||
|
||||
data_idx_based = data_dict.copy()
|
||||
vector_based = False
|
||||
|
||||
for key in data_idx_based.keys():
|
||||
data_idx_based[key]['X'] = [encode_tokens(tokens, vector_based) for tokens in data_dict[key]['X']]
|
||||
# print shape of data
|
||||
#print(key, len(data_dict[key]['X']), len(data_dict[key]['y']))
|
||||
|
||||
# save the data
|
||||
save_data(data_idx_based, 'data/idx_based_padded/', '', vocab_size)
|
||||
|
||||
vector_based = True
|
||||
# Encode the tokens
|
||||
for key in data_dict.keys():
|
||||
data_dict[key]['X'] = [encode_tokens(tokens, vector_based) for tokens in data_dict[key]['X']]
|
||||
# print shape of data
|
||||
#print(key, len(data_dict[key]['X']), len(data_dict[key]['y']))
|
||||
|
||||
# Save the data
|
||||
save_data(data_dict, 'data/embedded_padded/', '', vocab_size, emb_dim=model_embedding.vector_size)
|
||||
16
gpu_check.py
16
gpu_check.py
|
|
@ -1,16 +0,0 @@
|
|||
import torch
|
||||
|
||||
# Check if CUDA is available
|
||||
cuda_available = torch.cuda.is_available()
|
||||
print(f"CUDA available: {cuda_available}")
|
||||
|
||||
if cuda_available:
|
||||
# Print the current CUDA device
|
||||
current_device = torch.cuda.current_device()
|
||||
print(f"Current CUDA device: {current_device}")
|
||||
|
||||
# Print the name of the current CUDA device
|
||||
device_name = torch.cuda.get_device_name(current_device)
|
||||
print(f"CUDA device name: {device_name}")
|
||||
else:
|
||||
print("CUDA is not available. Please check your CUDA installation and PyTorch configuration.")
|
||||
|
|
@ -0,0 +1,89 @@
|
|||
import torch
|
||||
import nltk
|
||||
|
||||
import time
|
||||
import json
|
||||
import os
|
||||
|
||||
def get_device(verbose=False):
|
||||
"""
|
||||
Get the current device (CPU or GPU) for PyTorch.
|
||||
"""
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
if verbose:
|
||||
print('Using device:', device)
|
||||
return device
|
||||
|
||||
def save_model_and_hyperparameters(model, model_prefix_name, accuracy, timestamp=None,**kwargs):
|
||||
"""
|
||||
Save the model and hyperparameters to disk.
|
||||
**kwargs: hyperparameters to save
|
||||
"""
|
||||
# Create a timestamp
|
||||
if timestamp is None:
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
|
||||
accuracy = round(accuracy, 4)
|
||||
|
||||
# Save the model state dictionary
|
||||
model_path = f'models/{model_prefix_name}_acc_{accuracy}_{timestamp}.pth'
|
||||
torch.save(model.state_dict(), model_path)
|
||||
print(f"Model saved to {model_path}.")
|
||||
|
||||
# Save the hyperparameters as a JSON file
|
||||
hyperparameters = kwargs
|
||||
hyperparameters['accuracy'] = accuracy
|
||||
hyperparameters_path = f'models/{model_prefix_name}_para_acc_{accuracy}_{timestamp}.json'
|
||||
with open(hyperparameters_path, 'w') as f:
|
||||
json.dump(hyperparameters, f)
|
||||
print(f"Hyperparameters saved to {hyperparameters_path}.")
|
||||
|
||||
def get_newest_model_path(path, name=None, extension=".pth"):
|
||||
"""
|
||||
Get the newest file in a directory.
|
||||
"""
|
||||
# List all files in the directory
|
||||
files = [f for f in os.listdir(path) if f.endswith(extension)]
|
||||
# List all files with name in it
|
||||
if name:
|
||||
files = [f for f in files if name in f]
|
||||
|
||||
# Sort files by modification time
|
||||
files.sort(key=lambda x: os.path.getmtime(os.path.join(path, x)), reverse=True)
|
||||
|
||||
# Get the newest file
|
||||
if files:
|
||||
newest_model_path = os.path.join(path, files[0])
|
||||
return newest_model_path
|
||||
else:
|
||||
print("No File found in the directory")
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function used to set up the environment.
|
||||
"""
|
||||
# download nltk data
|
||||
nltk.download('punkt')
|
||||
nltk.download('punkt_tab')
|
||||
|
||||
|
||||
# Check if CUDA is available
|
||||
cuda_available = torch.cuda.is_available()
|
||||
print(f"CUDA available: {cuda_available}")
|
||||
|
||||
if cuda_available:
|
||||
# Print the current CUDA device
|
||||
current_device = torch.cuda.current_device()
|
||||
print(f"Current CUDA device: {current_device}")
|
||||
|
||||
# Print the name of the current CUDA device
|
||||
device_name = torch.cuda.get_device_name(current_device)
|
||||
print(f"CUDA device name: {device_name}")
|
||||
else:
|
||||
print("CUDA is not available. Please check your CUDA installation and PyTorch configuration.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
import numpy as np
|
||||
|
||||
class History:
|
||||
"""
|
||||
Class to store the history of the training process.
|
||||
Used to store the loss and accuracy of the training and validation sets.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.history = {
|
||||
'loss': [],
|
||||
'train_acc': [],
|
||||
'val_acc': [],
|
||||
}
|
||||
self.batch_history = {
|
||||
'loss': [],
|
||||
'train_acc': [],
|
||||
'val_acc': [],
|
||||
}
|
||||
|
||||
def update(self):
|
||||
self.history['loss'].append(np.mean(self.batch_history['loss']))
|
||||
self.history['train_acc'].append(np.mean(self.batch_history['train_acc']))
|
||||
self.history['val_acc'].append(np.mean(self.batch_history['val_acc']))
|
||||
|
||||
def get_history(self):
|
||||
return self.history
|
||||
|
||||
def batch_reset(self):
|
||||
self.batch_history = {
|
||||
'loss': [],
|
||||
'train_acc': [],
|
||||
'val_acc': [],
|
||||
}
|
||||
|
||||
def batch_update(self, loss, train_acc, val_acc):
|
||||
self.batch_history['loss'].append(loss)
|
||||
self.batch_history['train_acc'].append(train_acc)
|
||||
self.batch_history['val_acc'].append(val_acc)
|
||||
|
||||
def batch_update_train(self, loss, train_acc):
|
||||
self.batch_history['loss'].append(loss)
|
||||
self.batch_history['train_acc'].append(train_acc)
|
||||
|
||||
def batch_update_val(self, val_acc):
|
||||
self.batch_history['val_acc'].append(val_acc)
|
||||
|
||||
def get_batch_history(self):
|
||||
return self.batch_history
|
||||
|
|
@ -42,6 +42,13 @@ import time
|
|||
import torchvision
|
||||
torchvision.disable_beta_transforms_warning()
|
||||
|
||||
|
||||
def get_device(verbose=False):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
if verbose:
|
||||
print('Using device:', device)
|
||||
return device
|
||||
|
||||
# Test if GPU is available
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print('Using device:', DEVICE)
|
||||
|
|
@ -69,7 +76,7 @@ def pad_sequences(sequences, MAX_LEN):
|
|||
class HumorDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
self.labels = labels.reset_index(drop=True)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = {'input_ids': torch.tensor(self.encodings[idx], dtype=torch.float)}
|
||||
|
|
@ -0,0 +1,199 @@
|
|||
"""
|
||||
This file contains the transformer model.
|
||||
"""
|
||||
|
||||
|
||||
# TODO refactor the code
|
||||
# TODO create ml helper script
|
||||
# TODO create ml evaluation script
|
||||
|
||||
# TODO track overfitting better
|
||||
# TODO validate model in training (accuracy, loss, etc)
|
||||
|
||||
# TODO set length to a constant value which is the max length of the sentences or nearly
|
||||
|
||||
|
||||
# TODO user gloVe embeddings
|
||||
|
||||
#TODO: add attention mask
|
||||
# TODO: add positional encoding
|
||||
#TODO: add dropout (if needed)
|
||||
|
||||
import time
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AdamW
|
||||
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
import ml_helper
|
||||
import ml_history
|
||||
|
||||
class TransformerBinaryClassifier(nn.Module):
|
||||
def __init__(self, vocab_size, embed_dim, num_heads, num_layers, hidden_dim, dropout=0.1):
|
||||
super(TransformerBinaryClassifier, self).__init__()
|
||||
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
||||
self.transformer = nn.Transformer(embed_dim, num_heads, num_layers, num_layers, hidden_dim, dropout)
|
||||
self.fc = nn.Linear(embed_dim, 1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, input_ids):
|
||||
input_ids = input_ids.long()
|
||||
embedded = self.embedding(input_ids)
|
||||
transformer_output = self.transformer(embedded, embedded)
|
||||
pooled_output = transformer_output.mean(dim=1)
|
||||
logits = self.fc(pooled_output)
|
||||
return self.sigmoid(logits)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Load the data
|
||||
data_path = 'data/idx_based_padded'
|
||||
|
||||
train_dataset = torch.load(data_path + '/train.pt')
|
||||
test_dataset = torch.load(data_path + '/test.pt')
|
||||
val_dataset = torch.load(data_path + '/val.pt')
|
||||
|
||||
# +2 for padding and unk tokens
|
||||
vocab_size = train_dataset.vocab_size + 2
|
||||
embed_dim = 100 #train_dataset.emb_dim
|
||||
|
||||
# NOTE: Info comes from data explore notebook: 280 is max length,
|
||||
# 139 contains 80% and 192 contains 95% of the data
|
||||
max_len = 280
|
||||
|
||||
device = ml_helper.get_device(verbose=True)
|
||||
|
||||
# Model hyperparameters
|
||||
num_heads = 2
|
||||
num_layers = 2
|
||||
hidden_dim = 256
|
||||
|
||||
model = TransformerBinaryClassifier(vocab_size, embed_dim, num_heads, num_layers, hidden_dim)
|
||||
|
||||
# Training parameters
|
||||
epochs = 3 #3
|
||||
batch_size = 8
|
||||
learning_rate = 2e-5
|
||||
|
||||
# Optimizer and loss function
|
||||
optimizer = AdamW(model.parameters(), lr=learning_rate)
|
||||
criterion = nn.BCEWithLogitsLoss()
|
||||
|
||||
|
||||
# Data loaders
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
|
||||
################################################################################################
|
||||
# Training
|
||||
################################################################################################
|
||||
|
||||
# Initialize the history
|
||||
history = ml_history.History()
|
||||
|
||||
# Model to device
|
||||
model.to(device)
|
||||
|
||||
print("Starting training...")
|
||||
start_training_time = time.time()
|
||||
|
||||
# Training loop
|
||||
model.train()
|
||||
for epoch in range(epochs):
|
||||
# init batch tracking
|
||||
epoch_start_time = time.time()
|
||||
history.batch_reset()
|
||||
|
||||
for batch in train_loader:
|
||||
optimizer.zero_grad()
|
||||
# prepare batch
|
||||
input_ids = batch['input_ids'].to(device)
|
||||
labels = batch['labels'].unsqueeze(1).to(device)
|
||||
# forward pass
|
||||
outputs = model(input_ids)
|
||||
loss = criterion(outputs, labels)
|
||||
# backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# calculate accuracy train
|
||||
preds = outputs.round()
|
||||
train_acc = accuracy_score(labels.cpu().detach().numpy(),
|
||||
preds.cpu().detach().numpy())
|
||||
# update batch history
|
||||
history.batch_update_train(loss.item(), train_acc)
|
||||
|
||||
# calculate accuracy val
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for val_batch in val_loader:
|
||||
val_input_ids = val_batch['input_ids'].to(device)
|
||||
val_labels_batch = val_batch['labels'].unsqueeze(1).to(device)
|
||||
val_outputs = model(val_input_ids)
|
||||
val_acc = accuracy_score(val_outputs.round().cpu().numpy(),
|
||||
val_labels_batch.cpu().numpy())
|
||||
history.batch_update_val(val_acc)
|
||||
model.train()
|
||||
|
||||
# update epoch history
|
||||
history.update()
|
||||
|
||||
epoch_end_time = time.time()
|
||||
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Time: {epoch_end_time - epoch_start_time:.2f} sec, Loss: {history.history['loss'][-1]:.4f}, Train Acc: {history.history['train_acc'][-1]:.4f}, Val Acc: {history.history['val_acc'][-1]:.4f}")
|
||||
|
||||
end_training_time = time.time()
|
||||
print(f"Training finished in {end_training_time - start_training_time:.2f} seconds")
|
||||
|
||||
|
||||
################################################################################################
|
||||
# Evaluation
|
||||
################################################################################################
|
||||
print("Starting evaluation...")
|
||||
|
||||
model.eval()
|
||||
predictions, true_labels = [], []
|
||||
with torch.no_grad():
|
||||
for batch in test_loader:
|
||||
input_ids = batch['input_ids'].to(device)
|
||||
labels = batch['labels'].unsqueeze(1).to(device)
|
||||
|
||||
outputs = model(input_ids)
|
||||
preds = outputs.round()
|
||||
predictions.extend(preds.cpu().numpy())
|
||||
true_labels.extend(labels.cpu().numpy())
|
||||
|
||||
accuracy = accuracy_score(true_labels, predictions)
|
||||
print(f"Accuracy: {accuracy}")
|
||||
|
||||
|
||||
################################################################################################
|
||||
# Save model and hyperparameters
|
||||
################################################################################################
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
|
||||
ml_helper.save_model_and_hyperparameters(model, 'transformer', accuracy, timestamp,
|
||||
max_len=max_len,
|
||||
vocab_size=vocab_size,
|
||||
embed_dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
num_layers=num_layers,
|
||||
hidden_dim=hidden_dim,
|
||||
epochs=epochs,
|
||||
batch_size=batch_size,
|
||||
learning_rate=learning_rate)
|
||||
|
||||
#save history
|
||||
|
||||
history_path = f'models/transformer_history_{timestamp}.json'
|
||||
with open(history_path, 'w') as f:
|
||||
json.dump(history.get_history(), f)
|
||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue