refactored bootstrap

main
arman 2025-02-16 00:42:57 +01:00
parent 8b655b58ca
commit 95216088e5
2 changed files with 333 additions and 401 deletions

View File

@ -1,101 +1,159 @@
import pandas as pd
import numpy as np
import random
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from tqdm import tqdm
from dataset_generator import create_embedding_matrix
from EarlyStopping import EarlyStopping
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, Subset # Import Subset
#from utils import tokenize_and_pad, HumorDataset, evaluate_model, bootstrap_aggregation
def train_model(model, train_dataset, val_dataset, criterion, optimizer, epochs, batch_size):
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Subset
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
model.to(device)
history = {'train_loss': [], 'val_loss': [], 'train_r2': [], 'val_r2': []}
import Datasets
import dataset_helper
import EarlyStopping
import ml_helper
import ml_history
import ml_train
SEED = 501
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
class EnhancedCNNRegressor(nn.Module):
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
super(EnhancedCNNRegressor, self).__init__()
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
# Convolutional Schichten mit Batch-Normalisierung
self.convs = nn.ModuleList([
nn.Sequential(
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
nn.BatchNorm2d(num_filters), # Batch-Normalisierung
nn.ReLU(),
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
nn.Dropout(dropout) # Dropout nach jeder Schicht
)
for fs in filter_sizes
])
# Fully-Connected Layer
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128) # Erweiterte Dense-Schicht
self.fc2 = nn.Linear(128, 1) # Ausgangsschicht (Regression)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.embedding(x).unsqueeze(1) # [Batch, 1, Seq, Embedding]
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs] # Pooling reduziert Dim
x = torch.cat(conv_outputs, 1) # Kombiniere Features von allen Filtern
x = torch.relu(self.fc1(x)) # Zusätzliche Dense-Schicht
x = self.dropout(x)
return self.fc2(x).squeeze(1)
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
test_losses, train_losses = [], []
train_r2_scores, test_r2_scores = [], []
for epoch in range(epochs):
model.train()
total_loss = 0
all_train_preds, all_train_targets = [], []
for inputs, targets in train_dataloader:
inputs, targets = inputs.to(device), targets.to(device)
running_loss = 0.0
running_r2 = 0.0
# Training
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs).squeeze()
loss = criterion(outputs, targets)
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
all_train_preds.extend(outputs.detach().cpu().numpy())
all_train_targets.extend(targets.detach().cpu().numpy())
train_r2 = r2_score(all_train_targets, all_train_preds)
train_loss = total_loss / len(train_dataloader)
history['train_loss'].append(train_loss)
history['train_r2'].append(train_r2)
running_loss += loss.item()
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
model.eval()
val_loss = 0
all_val_preds, all_val_targets = [], []
train_losses.append(running_loss / len(train_loader))
train_r2_scores.append(running_r2 / len(train_loader))
# Test
model.eval() # Set model to evaluation mode
test_loss = 0.0
test_r2 = 0.0
with torch.no_grad(): # No gradient calculation for testing
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
test_losses.append(test_loss / len(test_loader))
test_r2_scores.append(test_r2 / len(test_loader))
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
return train_losses, test_losses, train_r2_scores, test_r2_scores
with torch.no_grad():
for inputs, targets in val_dataloader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs).squeeze()
loss = criterion(outputs, targets)
val_loss += loss.item()
all_val_preds.extend(outputs.cpu().numpy())
all_val_targets.extend(targets.cpu().numpy())
val_r2 = r2_score(all_val_targets, all_val_preds)
val_loss /= len(val_dataloader)
history['val_loss'].append(val_loss)
history['val_r2'].append(val_r2)
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, Train R²: {train_r2:.4f}, Val R²: {val_r2:.4f}")
return history
def bootstrap_aggregation(ModelClass, train_dataset, num_models=3, epochs=5, batch_size=32, learning_rate=0.001):
# Bootstrap Aggregation (Bagging) Update
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
models = []
all_histories = []
all_train_losses, all_test_losses = [], []
all_train_r2_scores, all_test_r2_scores = [], []
subset_size = len(train_dataset) // num_models
for i in range(num_models):
print(f"Training Model {i+1}/{num_models}...")
print(f"Training Model {i + 1}/{num_models}...")
start_idx = i * subset_size
end_idx = start_idx + subset_size
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
subset = Subset(train_dataset, subset_indices)
val_indices = list(range(start_idx, end_idx))
val_subset = Subset(train_dataset, val_indices)
model = ModelClass()
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
history = train_model(model, subset, val_subset, criterion, optimizer, epochs, batch_size)
all_histories.append(history)
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
models.append(model)
all_train_losses.append(train_losses)
all_test_losses.append(test_losses)
all_train_r2_scores.append(train_r2_scores)
all_test_r2_scores.append(test_r2_scores)
return models, all_histories
# Plot für alle Modelle
plt.figure(figsize=(12, 6))
for i in range(num_models):
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
plt.title("Training and Test Loss for all Models")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.figure(figsize=(12, 6))
for i in range(num_models):
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
plt.title("Training and Test R² for all Models")
plt.xlabel('Epochs')
plt.ylabel('')
plt.legend()
plt.show()
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
# Ensemble Prediction
def ensemble_predict(models, test_dataset):
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
all_predictions = []
@ -104,160 +162,64 @@ def ensemble_predict(models, test_dataset):
for inputs, _ in dataloader:
inputs = inputs.to(device)
predictions = torch.stack([model(inputs).squeeze() for model in models])
avg_predictions = predictions.mean(dim=0) # Mittelwert über alle Modelle
avg_predictions = predictions.mean(dim=0)
all_predictions.extend(avg_predictions.cpu().numpy())
return np.array(all_predictions)
import matplotlib.pyplot as plt
if __name__ == '__main__':
# Hyperparameter und Konfigurationen
params = {
# Config
"max_len": 280,
# Training
"epochs": 2,
"patience": 7,
"batch_size": 16,
"learning_rate": 0.001,
"weight_decay": 5e-4 ,
# Model
"filter_sizes": [2, 3, 4, 5],
"num_filters": 150,
"dropout": 0.6
}
def plot_training_histories(histories, num_models):
epochs = range(1, len(histories[0]['train_loss']) + 1)
# Configs
MODEL_NAME = 'CNN.pt'
HIST_NAME = 'CNN_history'
GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv'
EMBEDDING_DIM = 100
TEST_SIZE = 0.1
VAL_SIZE = 0.1
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Daten laden und vorbereiten
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
for i in range(num_models):
axes[0].plot(epochs, histories[i]['train_loss'], label=f"Train Loss Model {i+1}")
axes[0].plot(epochs, histories[i]['val_loss'], linestyle='dashed', label=f"Val Loss Model {i+1}")
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
axes[0].set_title("Train & Validation Loss")
axes[0].set_xlabel("Epochs")
axes[0].set_ylabel("Loss")
axes[0].legend()
# Aufteilen der Daten
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
for i in range(num_models):
axes[1].plot(epochs, histories[i]['train_r2'], label=f"Train R² Model {i+1}")
axes[1].plot(epochs, histories[i]['val_r2'], linestyle='dashed', label=f"Val R² Model {i+1}")
# Dataset und DataLoader
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
axes[1].set_title("Train & Validation R² Score")
axes[1].set_xlabel("Epochs")
axes[1].set_ylabel("R² Score")
axes[1].legend()
# Bootstrap Aggregation (Bagging) Training
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
EnhancedCNNRegressor, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
plt.show()
# 1. Gerät automatisch erkennen
device = torch.device('mps' if torch.backends.mps.is_available()
else 'cuda' if torch.cuda.is_available()
else 'cpu')
print(f"Using device: {device}")
# 2. Daten laden
data = pd.read_csv('data/hack.csv')
# 3. Filtern humorvoller Texte
humor_data = data[data['is_humor'] == 1].dropna(subset=['humor_rating']).copy()
# 4. Einbettungsmatrix erstellen
embedding_matrix, word_index, vocab_size, d_model = create_embedding_matrix(
gloVe_path='data/glove.6B.100d.txt', emb_len=100
)
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
# 5. Tokenisierung und Padding
def tokenize_and_pad(texts, word_index, max_len=50):
sequences = []
for text in texts:
tokens = [word_index.get(word, 0) for word in text.split()]
if len(tokens) < max_len:
tokens += [0] * (max_len - len(tokens))
else:
tokens = tokens[:max_len]
sequences.append(tokens)
return torch.tensor(sequences, dtype=torch.long)
max_len = 50
train_texts, test_texts, train_labels, test_labels = train_test_split(
humor_data['text'], humor_data['humor_rating'], test_size=0.2, random_state=42
)
train_input_ids = tokenize_and_pad(train_texts, word_index, max_len=max_len)
test_input_ids = tokenize_and_pad(test_texts, word_index, max_len=max_len)
# Labels in Tensor konvertieren
train_labels = torch.tensor(train_labels.values, dtype=torch.float)
test_labels = torch.tensor(test_labels.values, dtype=torch.float)
# 6. Dataset und DataLoader
class HumorDataset(Dataset):
def __init__(self, input_ids, labels):
self.input_ids = input_ids
self.labels = labels
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.labels[idx]
dataset = HumorDataset(train_input_ids, train_labels)
# 7. CNN-Regression-Modell
def create_cnn(vocab_size, embed_dim, embedding_matrix):
class CNNRegressor(nn.Module):
def __init__(self, vocab_size, embed_dim, embedding_matrix):
super(CNNRegressor, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.embedding.weight.data.copy_(embedding_matrix.clone().detach())
self.embedding.weight.requires_grad = False
self.conv1 = nn.Conv1d(embed_dim, 128, kernel_size=3)
self.conv2 = nn.Conv1d(128, 64, kernel_size=3)
self.dropout = nn.Dropout(0.5)
self.fc = nn.Linear(64, 1)
def forward(self, x):
x = self.embedding(x).permute(0, 2, 1)
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = self.dropout(x)
x = torch.max(x, dim=2).values
x = self.fc(x)
return torch.sigmoid(x) * 5
return CNNRegressor(vocab_size, embed_dim, embedding_matrix)
# 8. Bootstrap Aggregation mit CNN
models, histories = bootstrap_aggregation(
lambda: create_cnn(vocab_size, d_model, embedding_matrix),
dataset,
num_models=5,
epochs=10,
batch_size=32,
learning_rate=0.001
)
# **Plot Training & Validation Loss & R²**
plot_training_histories(histories, num_models=5)
# Vorhersagen mit Ensemble
predictions = ensemble_predict(models, HumorDataset(test_input_ids, test_labels))
actuals = test_labels.numpy()
# 9. Metriken berechnen
mse = mean_squared_error(actuals, predictions)
mae = mean_absolute_error(actuals, predictions)
r2 = r2_score(actuals, predictions)
print(f"MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
# 10. Visualisierung
tolerance = 0.5 # Toleranz für korrekte Vorhersagen
predictions = np.array(predictions)
actuals = np.array(actuals)
correct = np.abs(predictions - actuals) <= tolerance
colors = np.where(correct, 'green', 'red')
plt.figure(figsize=(8, 6))
plt.scatter(actuals, predictions, c=colors, alpha=0.6, edgecolor='k', s=50)
plt.plot([0, 5], [0, 5], color='red', linestyle='--')
green_patch = mpatches.Patch(color='green', label='Correct Predictions')
red_patch = mpatches.Patch(color='red', label='Incorrect Predictions')
plt.legend(handles=[green_patch, red_patch])
plt.xlabel("True Humor Ratings")
plt.ylabel("Predicted Humor Ratings")
plt.title("True vs Predicted Humor Ratings (Correct vs Incorrect)")
plt.show()
# Ensemble Prediction
test_predictions = ensemble_predict(models, test_dataset)
# Test Evaluation
# test_labels = np.array([y for _, y in test_dataset])
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")

View File

@ -1,50 +1,33 @@
import time
import json
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from nltk.tokenize import word_tokenize
import random
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Subset
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, confusion_matrix, r2_score
from sklearn.model_selection import KFold
# local imports
import ml_evaluation as ml_eval
import Datasets
import dataset_helper
import EarlyStopping
import ml_helper
import ml_history
import dataset_generator as data_gen
# class imports
import HumorDataset as humor_ds
import EarlyStopping
import BalancedCELoss
import ml_train
SEED = 501
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
torch.manual_seed(0)
np.random.seed(0)
best_model_filename = 'best_transformer_reg_model.pt'
device = ml_helper.get_device(verbose=True)
embedding_matrix, word_index, vocab_size, d_model = data_gen.create_embedding_matrix()
vocab_size = len(embedding_matrix)
d_model = len(embedding_matrix[0])
vocab_size, d_model = embedding_matrix.size()
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
class PositionalEncoding(nn.Module):
"""
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
"""
def __init__(self, d_model, vocab_size=5000, dropout=0.1):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
@ -66,6 +49,10 @@ class PositionalEncoding(nn.Module):
class TransformerBinaryClassifier(nn.Module):
"""
Text classifier based on a pytorch TransformerEncoder.
"""
def __init__(
self,
embeddings,
@ -74,8 +61,8 @@ class TransformerBinaryClassifier(nn.Module):
num_layers=6,
positional_dropout=0.1,
classifier_dropout=0.1,
activation="relu",
):
super().__init__()
vocab_size, d_model = embeddings.size()
@ -99,6 +86,7 @@ class TransformerBinaryClassifier(nn.Module):
encoder_layer,
num_layers=num_layers,
)
# normalize to stabilize and stop overfitting
self.batch_norm = nn.BatchNorm1d(d_model)
self.classifier = nn.Linear(d_model, 1)
self.d_model = d_model
@ -108,114 +96,71 @@ class TransformerBinaryClassifier(nn.Module):
x = self.pos_encoder(x)
x = self.transformer_encoder(x)
x = x.mean(dim=1)
# normalize to stabilize and stop overfitting
#x = self.batch_norm(x)
#NOTE: no activation function for regression
x = self.classifier(x)
x = x.squeeze(1)
return x
def load_preprocess_data(path_data='data/hack.csv'):
df = pd.read_csv(path_data)
df = df.dropna(subset=['humor_rating'])
df['y'] = df['humor_rating']
X = df['text']
y = df['y']
return X, y
X, y = load_preprocess_data()
ret_dict = data_gen.split_data(X, y)
params = {
'equalize_classes_loss_factor': 0.15,
'batch_size': 32,
'epochs': 2,
'lr': 1e-4,
'clipping_max_norm': 0,
'early_stopping_patience': 5,
'lr_scheduler_factor': 0.5,
'lr_scheduler_patience': 3,
'nhead': 2,
'num_layers': 3,
'hidden_dim': 10,
'positional_dropout': 0.5,
'classifier_dropout': 0.5,
'weight_decay': 1e-2
}
max_len = 280
train_dataset = humor_ds.TextDataset(ret_dict['train']['X'], ret_dict['train']['y'], word_index, max_len=max_len)
val_dataset = humor_ds.TextDataset(ret_dict['val']['X'], ret_dict['val']['y'], word_index, max_len=max_len)
test_dataset = humor_ds.TextDataset(ret_dict['test']['X'], ret_dict['test']['y'], word_index, max_len=max_len)
train_loader = DataLoader(train_dataset, batch_size=params['batch_size'], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=params['batch_size'], shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=params['batch_size'], shuffle=False)
early_stopping = EarlyStopping.EarlyStopping(patience=params['early_stopping_patience'], verbose=False)
def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size):
dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
model.to(device)
# Store for plotting
train_losses, val_losses = [], []
train_r2_scores, val_r2_scores = [], []
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
test_losses, train_losses = [], []
train_r2_scores, test_r2_scores = [], []
for epoch in range(epochs):
model.train()
total_loss = 0
all_preds, all_targets = [], []
for inputs, targets in dataloader:
inputs, targets = inputs.to(device), targets.to(device)
running_loss = 0.0
running_r2 = 0.0
# Training
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs).squeeze()
loss = criterion(outputs, targets.float())
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
running_loss += loss.item()
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
train_losses.append(running_loss / len(train_loader))
train_r2_scores.append(running_r2 / len(train_loader))
# Test
model.eval() # Set model to evaluation mode
test_loss = 0.0
test_r2 = 0.0
with torch.no_grad(): # No gradient calculation for testing
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
test_losses.append(test_loss / len(test_loader))
test_r2_scores.append(test_r2 / len(test_loader))
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
return train_losses, test_losses, train_r2_scores, test_r2_scores
all_preds.extend(outputs.detach().cpu().numpy())
all_targets.extend(targets.detach().cpu().numpy())
# Calculate R2
r2 = r2_score(all_targets, all_preds)
train_losses.append(total_loss / len(dataloader))
train_r2_scores.append(r2)
# Validation phase
model.eval()
val_loss = 0
val_preds, val_targets = [], []
with torch.no_grad():
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs).squeeze()
loss = criterion(outputs, targets.float())
val_loss += loss.item()
val_preds.extend(outputs.cpu().numpy())
val_targets.extend(targets.cpu().numpy())
# Calculate Validation R2
val_r2 = r2_score(val_targets, val_preds)
val_losses.append(val_loss / len(val_loader))
val_r2_scores.append(val_r2)
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}, R^2 (Train): {r2:.4f}, Val R^2: {val_r2:.4f}")
return train_losses, val_losses, train_r2_scores, val_r2_scores
def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
# Bootstrap Aggregation (Bagging) Update
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
models = []
all_train_losses, all_val_losses = [], []
all_train_r2_scores, all_val_r2_scores = [], []
all_train_losses, all_test_losses = [], []
all_train_r2_scores, all_test_r2_scores = [], []
subset_size = len(train_dataset) // num_models
for i in range(num_models):
@ -225,20 +170,41 @@ def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, ba
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
subset = Subset(train_dataset, subset_indices)
model = ModelClass()
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
train_losses, val_losses, train_r2_scores, val_r2_scores = train_model(model, subset, criterion, optimizer, epochs, batch_size)
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
models.append(model)
all_train_losses.append(train_losses)
all_val_losses.append(val_losses)
all_test_losses.append(test_losses)
all_train_r2_scores.append(train_r2_scores)
all_val_r2_scores.append(val_r2_scores)
all_test_r2_scores.append(test_r2_scores)
return models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores
# Plot für alle Modelle
plt.figure(figsize=(12, 6))
for i in range(num_models):
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
plt.title("Training and Test Loss for all Models")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.figure(figsize=(12, 6))
for i in range(num_models):
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
plt.title("Training and Test R² for all Models")
plt.xlabel('Epochs')
plt.ylabel('')
plt.legend()
plt.show()
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
# Ensemble Prediction
def ensemble_predict(models, test_dataset):
@ -254,57 +220,61 @@ def ensemble_predict(models, test_dataset):
return np.array(all_predictions)
if __name__ == '__main__':
# Hyperparameter und Konfigurationen
params = {
# Config
"max_len": 280,
# Training
"epochs": 25,
"patience": 7,
"batch_size": 32,
"learning_rate": 1e-4, # 1e-4
"weight_decay": 5e-4 ,
# Model
'nhead': 2, # 5
"dropout": 0.2,
'hiden_dim': 2048,
'num_layers': 6
}
# TODO set seeds
# Bootstrap Aggregating
num_models = 2
ensemble_models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores = bootstrap_aggregation(
lambda: TransformerBinaryClassifier(
embeddings=embedding_matrix,
nhead=params['nhead'],
num_layers=params['num_layers'],
dim_feedforward=params['hidden_dim'],
positional_dropout=params['positional_dropout'],
classifier_dropout=params['classifier_dropout']
).to(device),
train_dataset,
num_models=num_models,
epochs=params['epochs'],
batch_size=params['batch_size'],
learning_rate=params['lr']
)
# Configs
MODEL_NAME = 'transfomrer.pt'
HIST_NAME = 'transformer_history'
GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv'
EMBEDDING_DIM = 100
TEST_SIZE = 0.1
VAL_SIZE = 0.1
# Ensemble Prediction on Testset
ensemble_predictions = ensemble_predict(ensemble_models, test_dataset)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Daten laden und vorbereiten
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
# Plotting
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
# Plot Train and Validation Losses
for i in range(num_models):
ax1.plot(range(1, params['epochs'] + 1), all_train_losses[i], label=f"Train Model {i+1}")
ax1.plot(range(1, params['epochs'] + 1), all_val_losses[i], label=f"Val Model {i+1}", linestyle='dashed')
# Aufteilen der Daten
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
ax1.set_title('Train and Validation Loss')
ax1.set_xlabel('Epochs')
ax1.set_ylabel('Loss')
ax1.legend()
# Dataset und DataLoader
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
# Plot Train and Validation R²
for i in range(num_models):
ax2.plot(range(1, params['epochs'] + 1), all_train_r2_scores[i], label=f"Train Model {i+1}")
ax2.plot(range(1, params['epochs'] + 1), all_val_r2_scores[i], label=f"Val Model {i+1}", linestyle='dashed')
# Bootstrap Aggregation (Bagging) Training
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
TransformerBinaryClassifier, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
ax2.set_title('Train and Validation R²')
ax2.set_xlabel('Epochs')
ax2.set_ylabel('')
ax2.legend()
# Ensemble Prediction
test_predictions = ensemble_predict(models, test_dataset)
plt.tight_layout()
plt.show()
# Evaluation
mse = mean_squared_error(test_dataset.labels.to_numpy(), ensemble_predictions)
mae = mean_absolute_error(test_dataset.labels.to_numpy(), ensemble_predictions)
r2 = r2_score(test_dataset.labels.to_numpy(), ensemble_predictions)
print(f"Ensemble MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
# Test Evaluation
# test_labels = np.array([y for _, y in test_dataset])
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")