refactored bootstrap
parent
8b655b58ca
commit
95216088e5
|
|
@ -1,101 +1,159 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as mpatches
|
||||
from tqdm import tqdm
|
||||
from dataset_generator import create_embedding_matrix
|
||||
from EarlyStopping import EarlyStopping
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset, Subset # Import Subset
|
||||
#from utils import tokenize_and_pad, HumorDataset, evaluate_model, bootstrap_aggregation
|
||||
def train_model(model, train_dataset, val_dataset, criterion, optimizer, epochs, batch_size):
|
||||
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import DataLoader, Subset
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
import numpy as np
|
||||
|
||||
model.to(device)
|
||||
history = {'train_loss': [], 'val_loss': [], 'train_r2': [], 'val_r2': []}
|
||||
import Datasets
|
||||
import dataset_helper
|
||||
import EarlyStopping
|
||||
import ml_helper
|
||||
import ml_history
|
||||
import ml_train
|
||||
|
||||
SEED = 501
|
||||
random.seed(SEED)
|
||||
np.random.seed(SEED)
|
||||
torch.manual_seed(SEED)
|
||||
torch.cuda.manual_seed_all(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
class EnhancedCNNRegressor(nn.Module):
|
||||
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
|
||||
super(EnhancedCNNRegressor, self).__init__()
|
||||
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
|
||||
|
||||
# Convolutional Schichten mit Batch-Normalisierung
|
||||
self.convs = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
|
||||
nn.BatchNorm2d(num_filters), # Batch-Normalisierung
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
|
||||
nn.Dropout(dropout) # Dropout nach jeder Schicht
|
||||
)
|
||||
for fs in filter_sizes
|
||||
])
|
||||
|
||||
# Fully-Connected Layer
|
||||
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128) # Erweiterte Dense-Schicht
|
||||
self.fc2 = nn.Linear(128, 1) # Ausgangsschicht (Regression)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embedding(x).unsqueeze(1) # [Batch, 1, Seq, Embedding]
|
||||
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs] # Pooling reduziert Dim
|
||||
x = torch.cat(conv_outputs, 1) # Kombiniere Features von allen Filtern
|
||||
x = torch.relu(self.fc1(x)) # Zusätzliche Dense-Schicht
|
||||
x = self.dropout(x)
|
||||
return self.fc2(x).squeeze(1)
|
||||
|
||||
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
test_losses, train_losses = [], []
|
||||
train_r2_scores, test_r2_scores = [], []
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
all_train_preds, all_train_targets = [], []
|
||||
|
||||
for inputs, targets in train_dataloader:
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
running_loss = 0.0
|
||||
running_r2 = 0.0
|
||||
|
||||
# Training
|
||||
for inputs, labels in train_loader:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, targets)
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss += loss.item()
|
||||
|
||||
all_train_preds.extend(outputs.detach().cpu().numpy())
|
||||
all_train_targets.extend(targets.detach().cpu().numpy())
|
||||
|
||||
train_r2 = r2_score(all_train_targets, all_train_preds)
|
||||
train_loss = total_loss / len(train_dataloader)
|
||||
history['train_loss'].append(train_loss)
|
||||
history['train_r2'].append(train_r2)
|
||||
|
||||
|
||||
running_loss += loss.item()
|
||||
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
||||
|
||||
model.eval()
|
||||
val_loss = 0
|
||||
all_val_preds, all_val_targets = [], []
|
||||
train_losses.append(running_loss / len(train_loader))
|
||||
train_r2_scores.append(running_r2 / len(train_loader))
|
||||
|
||||
# Test
|
||||
model.eval() # Set model to evaluation mode
|
||||
test_loss = 0.0
|
||||
test_r2 = 0.0
|
||||
with torch.no_grad(): # No gradient calculation for testing
|
||||
for inputs, labels in test_loader:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
test_loss += loss.item()
|
||||
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
||||
|
||||
test_losses.append(test_loss / len(test_loader))
|
||||
test_r2_scores.append(test_r2 / len(test_loader))
|
||||
|
||||
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
|
||||
|
||||
return train_losses, test_losses, train_r2_scores, test_r2_scores
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, targets in val_dataloader:
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, targets)
|
||||
val_loss += loss.item()
|
||||
|
||||
all_val_preds.extend(outputs.cpu().numpy())
|
||||
all_val_targets.extend(targets.cpu().numpy())
|
||||
|
||||
val_r2 = r2_score(all_val_targets, all_val_preds)
|
||||
val_loss /= len(val_dataloader)
|
||||
history['val_loss'].append(val_loss)
|
||||
history['val_r2'].append(val_r2)
|
||||
|
||||
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, Train R²: {train_r2:.4f}, Val R²: {val_r2:.4f}")
|
||||
|
||||
return history
|
||||
|
||||
|
||||
def bootstrap_aggregation(ModelClass, train_dataset, num_models=3, epochs=5, batch_size=32, learning_rate=0.001):
|
||||
# Bootstrap Aggregation (Bagging) Update
|
||||
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
||||
models = []
|
||||
all_histories = []
|
||||
|
||||
all_train_losses, all_test_losses = [], []
|
||||
all_train_r2_scores, all_test_r2_scores = [], []
|
||||
|
||||
subset_size = len(train_dataset) // num_models
|
||||
|
||||
for i in range(num_models):
|
||||
print(f"Training Model {i+1}/{num_models}...")
|
||||
|
||||
print(f"Training Model {i + 1}/{num_models}...")
|
||||
start_idx = i * subset_size
|
||||
end_idx = start_idx + subset_size
|
||||
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
||||
|
||||
subset = Subset(train_dataset, subset_indices)
|
||||
|
||||
|
||||
val_indices = list(range(start_idx, end_idx))
|
||||
val_subset = Subset(train_dataset, val_indices)
|
||||
|
||||
model = ModelClass()
|
||||
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
|
||||
model.to(device)
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
history = train_model(model, subset, val_subset, criterion, optimizer, epochs, batch_size)
|
||||
all_histories.append(history)
|
||||
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
|
||||
|
||||
models.append(model)
|
||||
all_train_losses.append(train_losses)
|
||||
all_test_losses.append(test_losses)
|
||||
all_train_r2_scores.append(train_r2_scores)
|
||||
all_test_r2_scores.append(test_r2_scores)
|
||||
|
||||
return models, all_histories
|
||||
# Plot für alle Modelle
|
||||
plt.figure(figsize=(12, 6))
|
||||
for i in range(num_models):
|
||||
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
|
||||
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
|
||||
plt.title("Training and Test Loss for all Models")
|
||||
plt.xlabel('Epochs')
|
||||
plt.ylabel('Loss')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
plt.figure(figsize=(12, 6))
|
||||
for i in range(num_models):
|
||||
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
|
||||
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
|
||||
plt.title("Training and Test R² for all Models")
|
||||
plt.xlabel('Epochs')
|
||||
plt.ylabel('R²')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
|
||||
|
||||
# Ensemble Prediction
|
||||
def ensemble_predict(models, test_dataset):
|
||||
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
||||
all_predictions = []
|
||||
|
|
@ -104,160 +162,64 @@ def ensemble_predict(models, test_dataset):
|
|||
for inputs, _ in dataloader:
|
||||
inputs = inputs.to(device)
|
||||
predictions = torch.stack([model(inputs).squeeze() for model in models])
|
||||
avg_predictions = predictions.mean(dim=0) # Mittelwert über alle Modelle
|
||||
avg_predictions = predictions.mean(dim=0)
|
||||
all_predictions.extend(avg_predictions.cpu().numpy())
|
||||
|
||||
return np.array(all_predictions)
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
if __name__ == '__main__':
|
||||
# Hyperparameter und Konfigurationen
|
||||
params = {
|
||||
# Config
|
||||
"max_len": 280,
|
||||
# Training
|
||||
"epochs": 2,
|
||||
"patience": 7,
|
||||
"batch_size": 16,
|
||||
"learning_rate": 0.001,
|
||||
"weight_decay": 5e-4 ,
|
||||
# Model
|
||||
"filter_sizes": [2, 3, 4, 5],
|
||||
"num_filters": 150,
|
||||
"dropout": 0.6
|
||||
}
|
||||
|
||||
def plot_training_histories(histories, num_models):
|
||||
epochs = range(1, len(histories[0]['train_loss']) + 1)
|
||||
# Configs
|
||||
MODEL_NAME = 'CNN.pt'
|
||||
HIST_NAME = 'CNN_history'
|
||||
GLOVE_PATH = 'data/glove.6B.100d.txt'
|
||||
DATA_PATH = 'data/hack.csv'
|
||||
EMBEDDING_DIM = 100
|
||||
TEST_SIZE = 0.1
|
||||
VAL_SIZE = 0.1
|
||||
|
||||
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
# Daten laden und vorbereiten
|
||||
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
||||
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
||||
|
||||
|
||||
for i in range(num_models):
|
||||
axes[0].plot(epochs, histories[i]['train_loss'], label=f"Train Loss Model {i+1}")
|
||||
axes[0].plot(epochs, histories[i]['val_loss'], linestyle='dashed', label=f"Val Loss Model {i+1}")
|
||||
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
||||
|
||||
axes[0].set_title("Train & Validation Loss")
|
||||
axes[0].set_xlabel("Epochs")
|
||||
axes[0].set_ylabel("Loss")
|
||||
axes[0].legend()
|
||||
# Aufteilen der Daten
|
||||
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
||||
|
||||
for i in range(num_models):
|
||||
axes[1].plot(epochs, histories[i]['train_r2'], label=f"Train R² Model {i+1}")
|
||||
axes[1].plot(epochs, histories[i]['val_r2'], linestyle='dashed', label=f"Val R² Model {i+1}")
|
||||
# Dataset und DataLoader
|
||||
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||
|
||||
axes[1].set_title("Train & Validation R² Score")
|
||||
axes[1].set_xlabel("Epochs")
|
||||
axes[1].set_ylabel("R² Score")
|
||||
axes[1].legend()
|
||||
# Bootstrap Aggregation (Bagging) Training
|
||||
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
|
||||
EnhancedCNNRegressor, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 1. Gerät automatisch erkennen
|
||||
device = torch.device('mps' if torch.backends.mps.is_available()
|
||||
else 'cuda' if torch.cuda.is_available()
|
||||
else 'cpu')
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# 2. Daten laden
|
||||
data = pd.read_csv('data/hack.csv')
|
||||
|
||||
# 3. Filtern humorvoller Texte
|
||||
humor_data = data[data['is_humor'] == 1].dropna(subset=['humor_rating']).copy()
|
||||
|
||||
# 4. Einbettungsmatrix erstellen
|
||||
embedding_matrix, word_index, vocab_size, d_model = create_embedding_matrix(
|
||||
gloVe_path='data/glove.6B.100d.txt', emb_len=100
|
||||
)
|
||||
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
|
||||
|
||||
# 5. Tokenisierung und Padding
|
||||
def tokenize_and_pad(texts, word_index, max_len=50):
|
||||
sequences = []
|
||||
for text in texts:
|
||||
tokens = [word_index.get(word, 0) for word in text.split()]
|
||||
if len(tokens) < max_len:
|
||||
tokens += [0] * (max_len - len(tokens))
|
||||
else:
|
||||
tokens = tokens[:max_len]
|
||||
sequences.append(tokens)
|
||||
return torch.tensor(sequences, dtype=torch.long)
|
||||
max_len = 50
|
||||
train_texts, test_texts, train_labels, test_labels = train_test_split(
|
||||
humor_data['text'], humor_data['humor_rating'], test_size=0.2, random_state=42
|
||||
)
|
||||
train_input_ids = tokenize_and_pad(train_texts, word_index, max_len=max_len)
|
||||
test_input_ids = tokenize_and_pad(test_texts, word_index, max_len=max_len)
|
||||
|
||||
# Labels in Tensor konvertieren
|
||||
train_labels = torch.tensor(train_labels.values, dtype=torch.float)
|
||||
test_labels = torch.tensor(test_labels.values, dtype=torch.float)
|
||||
|
||||
# 6. Dataset und DataLoader
|
||||
class HumorDataset(Dataset):
|
||||
def __init__(self, input_ids, labels):
|
||||
self.input_ids = input_ids
|
||||
self.labels = labels
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_ids)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.input_ids[idx], self.labels[idx]
|
||||
dataset = HumorDataset(train_input_ids, train_labels)
|
||||
|
||||
# 7. CNN-Regression-Modell
|
||||
def create_cnn(vocab_size, embed_dim, embedding_matrix):
|
||||
class CNNRegressor(nn.Module):
|
||||
def __init__(self, vocab_size, embed_dim, embedding_matrix):
|
||||
super(CNNRegressor, self).__init__()
|
||||
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
||||
self.embedding.weight.data.copy_(embedding_matrix.clone().detach())
|
||||
self.embedding.weight.requires_grad = False
|
||||
self.conv1 = nn.Conv1d(embed_dim, 128, kernel_size=3)
|
||||
self.conv2 = nn.Conv1d(128, 64, kernel_size=3)
|
||||
self.dropout = nn.Dropout(0.5)
|
||||
self.fc = nn.Linear(64, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embedding(x).permute(0, 2, 1)
|
||||
x = torch.relu(self.conv1(x))
|
||||
x = torch.relu(self.conv2(x))
|
||||
x = self.dropout(x)
|
||||
x = torch.max(x, dim=2).values
|
||||
x = self.fc(x)
|
||||
return torch.sigmoid(x) * 5
|
||||
|
||||
return CNNRegressor(vocab_size, embed_dim, embedding_matrix)
|
||||
|
||||
# 8. Bootstrap Aggregation mit CNN
|
||||
models, histories = bootstrap_aggregation(
|
||||
lambda: create_cnn(vocab_size, d_model, embedding_matrix),
|
||||
dataset,
|
||||
num_models=5,
|
||||
epochs=10,
|
||||
batch_size=32,
|
||||
learning_rate=0.001
|
||||
)
|
||||
# **Plot Training & Validation Loss & R²**
|
||||
plot_training_histories(histories, num_models=5)
|
||||
|
||||
|
||||
# Vorhersagen mit Ensemble
|
||||
predictions = ensemble_predict(models, HumorDataset(test_input_ids, test_labels))
|
||||
actuals = test_labels.numpy()
|
||||
|
||||
# 9. Metriken berechnen
|
||||
mse = mean_squared_error(actuals, predictions)
|
||||
mae = mean_absolute_error(actuals, predictions)
|
||||
r2 = r2_score(actuals, predictions)
|
||||
|
||||
print(f"MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
|
||||
|
||||
# 10. Visualisierung
|
||||
tolerance = 0.5 # Toleranz für korrekte Vorhersagen
|
||||
predictions = np.array(predictions)
|
||||
actuals = np.array(actuals)
|
||||
|
||||
correct = np.abs(predictions - actuals) <= tolerance
|
||||
colors = np.where(correct, 'green', 'red')
|
||||
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.scatter(actuals, predictions, c=colors, alpha=0.6, edgecolor='k', s=50)
|
||||
plt.plot([0, 5], [0, 5], color='red', linestyle='--')
|
||||
|
||||
green_patch = mpatches.Patch(color='green', label='Correct Predictions')
|
||||
red_patch = mpatches.Patch(color='red', label='Incorrect Predictions')
|
||||
plt.legend(handles=[green_patch, red_patch])
|
||||
|
||||
plt.xlabel("True Humor Ratings")
|
||||
plt.ylabel("Predicted Humor Ratings")
|
||||
plt.title("True vs Predicted Humor Ratings (Correct vs Incorrect)")
|
||||
plt.show()
|
||||
# Ensemble Prediction
|
||||
test_predictions = ensemble_predict(models, test_dataset)
|
||||
|
||||
# Test Evaluation
|
||||
# test_labels = np.array([y for _, y in test_dataset])
|
||||
|
||||
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
|
||||
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
|
||||
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
|
||||
|
||||
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
||||
|
|
|
|||
|
|
@ -1,50 +1,33 @@
|
|||
import time
|
||||
import json
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
from nltk.tokenize import word_tokenize
|
||||
|
||||
import random
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import DataLoader, Subset
|
||||
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
import numpy as np
|
||||
|
||||
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, confusion_matrix, r2_score
|
||||
from sklearn.model_selection import KFold
|
||||
# local imports
|
||||
import ml_evaluation as ml_eval
|
||||
import Datasets
|
||||
import dataset_helper
|
||||
import EarlyStopping
|
||||
import ml_helper
|
||||
import ml_history
|
||||
import dataset_generator as data_gen
|
||||
# class imports
|
||||
import HumorDataset as humor_ds
|
||||
import EarlyStopping
|
||||
import BalancedCELoss
|
||||
import ml_train
|
||||
|
||||
SEED = 501
|
||||
random.seed(SEED)
|
||||
np.random.seed(SEED)
|
||||
torch.manual_seed(SEED)
|
||||
torch.cuda.manual_seed_all(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
|
||||
|
||||
best_model_filename = 'best_transformer_reg_model.pt'
|
||||
|
||||
device = ml_helper.get_device(verbose=True)
|
||||
|
||||
embedding_matrix, word_index, vocab_size, d_model = data_gen.create_embedding_matrix()
|
||||
|
||||
vocab_size = len(embedding_matrix)
|
||||
d_model = len(embedding_matrix[0])
|
||||
vocab_size, d_model = embedding_matrix.size()
|
||||
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
"""
|
||||
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
|
||||
"""
|
||||
|
||||
def __init__(self, d_model, vocab_size=5000, dropout=0.1):
|
||||
super().__init__()
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
|
@ -66,6 +49,10 @@ class PositionalEncoding(nn.Module):
|
|||
|
||||
|
||||
class TransformerBinaryClassifier(nn.Module):
|
||||
"""
|
||||
Text classifier based on a pytorch TransformerEncoder.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embeddings,
|
||||
|
|
@ -74,8 +61,8 @@ class TransformerBinaryClassifier(nn.Module):
|
|||
num_layers=6,
|
||||
positional_dropout=0.1,
|
||||
classifier_dropout=0.1,
|
||||
activation="relu",
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
vocab_size, d_model = embeddings.size()
|
||||
|
|
@ -99,6 +86,7 @@ class TransformerBinaryClassifier(nn.Module):
|
|||
encoder_layer,
|
||||
num_layers=num_layers,
|
||||
)
|
||||
# normalize to stabilize and stop overfitting
|
||||
self.batch_norm = nn.BatchNorm1d(d_model)
|
||||
self.classifier = nn.Linear(d_model, 1)
|
||||
self.d_model = d_model
|
||||
|
|
@ -108,114 +96,71 @@ class TransformerBinaryClassifier(nn.Module):
|
|||
x = self.pos_encoder(x)
|
||||
x = self.transformer_encoder(x)
|
||||
x = x.mean(dim=1)
|
||||
# normalize to stabilize and stop overfitting
|
||||
#x = self.batch_norm(x)
|
||||
|
||||
#NOTE: no activation function for regression
|
||||
x = self.classifier(x)
|
||||
x = x.squeeze(1)
|
||||
return x
|
||||
|
||||
|
||||
def load_preprocess_data(path_data='data/hack.csv'):
|
||||
df = pd.read_csv(path_data)
|
||||
df = df.dropna(subset=['humor_rating'])
|
||||
|
||||
df['y'] = df['humor_rating']
|
||||
X = df['text']
|
||||
y = df['y']
|
||||
return X, y
|
||||
|
||||
|
||||
X, y = load_preprocess_data()
|
||||
|
||||
ret_dict = data_gen.split_data(X, y)
|
||||
|
||||
params = {
|
||||
'equalize_classes_loss_factor': 0.15,
|
||||
'batch_size': 32,
|
||||
'epochs': 2,
|
||||
'lr': 1e-4,
|
||||
'clipping_max_norm': 0,
|
||||
'early_stopping_patience': 5,
|
||||
'lr_scheduler_factor': 0.5,
|
||||
'lr_scheduler_patience': 3,
|
||||
'nhead': 2,
|
||||
'num_layers': 3,
|
||||
'hidden_dim': 10,
|
||||
'positional_dropout': 0.5,
|
||||
'classifier_dropout': 0.5,
|
||||
'weight_decay': 1e-2
|
||||
}
|
||||
|
||||
max_len = 280
|
||||
|
||||
train_dataset = humor_ds.TextDataset(ret_dict['train']['X'], ret_dict['train']['y'], word_index, max_len=max_len)
|
||||
val_dataset = humor_ds.TextDataset(ret_dict['val']['X'], ret_dict['val']['y'], word_index, max_len=max_len)
|
||||
test_dataset = humor_ds.TextDataset(ret_dict['test']['X'], ret_dict['test']['y'], word_index, max_len=max_len)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=params['batch_size'], shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size=params['batch_size'], shuffle=False)
|
||||
test_loader = DataLoader(test_dataset, batch_size=params['batch_size'], shuffle=False)
|
||||
|
||||
early_stopping = EarlyStopping.EarlyStopping(patience=params['early_stopping_patience'], verbose=False)
|
||||
|
||||
|
||||
def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size):
|
||||
dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
model.to(device)
|
||||
|
||||
# Store for plotting
|
||||
train_losses, val_losses = [], []
|
||||
train_r2_scores, val_r2_scores = [], []
|
||||
|
||||
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
test_losses, train_losses = [], []
|
||||
train_r2_scores, test_r2_scores = [], []
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
all_preds, all_targets = [], []
|
||||
|
||||
for inputs, targets in dataloader:
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
running_loss = 0.0
|
||||
running_r2 = 0.0
|
||||
|
||||
# Training
|
||||
for inputs, labels in train_loader:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, targets.float())
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss += loss.item()
|
||||
|
||||
running_loss += loss.item()
|
||||
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
||||
|
||||
train_losses.append(running_loss / len(train_loader))
|
||||
train_r2_scores.append(running_r2 / len(train_loader))
|
||||
|
||||
# Test
|
||||
model.eval() # Set model to evaluation mode
|
||||
test_loss = 0.0
|
||||
test_r2 = 0.0
|
||||
with torch.no_grad(): # No gradient calculation for testing
|
||||
for inputs, labels in test_loader:
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
test_loss += loss.item()
|
||||
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
||||
|
||||
test_losses.append(test_loss / len(test_loader))
|
||||
test_r2_scores.append(test_r2 / len(test_loader))
|
||||
|
||||
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
|
||||
|
||||
return train_losses, test_losses, train_r2_scores, test_r2_scores
|
||||
|
||||
all_preds.extend(outputs.detach().cpu().numpy())
|
||||
all_targets.extend(targets.detach().cpu().numpy())
|
||||
|
||||
# Calculate R2
|
||||
r2 = r2_score(all_targets, all_preds)
|
||||
train_losses.append(total_loss / len(dataloader))
|
||||
train_r2_scores.append(r2)
|
||||
|
||||
# Validation phase
|
||||
model.eval()
|
||||
val_loss = 0
|
||||
val_preds, val_targets = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, targets in val_loader:
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, targets.float())
|
||||
val_loss += loss.item()
|
||||
|
||||
val_preds.extend(outputs.cpu().numpy())
|
||||
val_targets.extend(targets.cpu().numpy())
|
||||
|
||||
# Calculate Validation R2
|
||||
val_r2 = r2_score(val_targets, val_preds)
|
||||
val_losses.append(val_loss / len(val_loader))
|
||||
val_r2_scores.append(val_r2)
|
||||
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}, R^2 (Train): {r2:.4f}, Val R^2: {val_r2:.4f}")
|
||||
|
||||
return train_losses, val_losses, train_r2_scores, val_r2_scores
|
||||
|
||||
|
||||
def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
||||
# Bootstrap Aggregation (Bagging) Update
|
||||
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
||||
models = []
|
||||
all_train_losses, all_val_losses = [], []
|
||||
all_train_r2_scores, all_val_r2_scores = [], []
|
||||
|
||||
all_train_losses, all_test_losses = [], []
|
||||
all_train_r2_scores, all_test_r2_scores = [], []
|
||||
|
||||
subset_size = len(train_dataset) // num_models
|
||||
|
||||
for i in range(num_models):
|
||||
|
|
@ -225,20 +170,41 @@ def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, ba
|
|||
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
||||
subset = Subset(train_dataset, subset_indices)
|
||||
|
||||
model = ModelClass()
|
||||
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
|
||||
model.to(device)
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
train_losses, val_losses, train_r2_scores, val_r2_scores = train_model(model, subset, criterion, optimizer, epochs, batch_size)
|
||||
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
|
||||
|
||||
models.append(model)
|
||||
all_train_losses.append(train_losses)
|
||||
all_val_losses.append(val_losses)
|
||||
all_test_losses.append(test_losses)
|
||||
all_train_r2_scores.append(train_r2_scores)
|
||||
all_val_r2_scores.append(val_r2_scores)
|
||||
all_test_r2_scores.append(test_r2_scores)
|
||||
|
||||
return models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores
|
||||
# Plot für alle Modelle
|
||||
plt.figure(figsize=(12, 6))
|
||||
for i in range(num_models):
|
||||
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
|
||||
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
|
||||
plt.title("Training and Test Loss for all Models")
|
||||
plt.xlabel('Epochs')
|
||||
plt.ylabel('Loss')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
plt.figure(figsize=(12, 6))
|
||||
for i in range(num_models):
|
||||
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
|
||||
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
|
||||
plt.title("Training and Test R² for all Models")
|
||||
plt.xlabel('Epochs')
|
||||
plt.ylabel('R²')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
|
||||
|
||||
# Ensemble Prediction
|
||||
def ensemble_predict(models, test_dataset):
|
||||
|
|
@ -254,57 +220,61 @@ def ensemble_predict(models, test_dataset):
|
|||
|
||||
return np.array(all_predictions)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Hyperparameter und Konfigurationen
|
||||
params = {
|
||||
# Config
|
||||
"max_len": 280,
|
||||
# Training
|
||||
"epochs": 25,
|
||||
"patience": 7,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 1e-4, # 1e-4
|
||||
"weight_decay": 5e-4 ,
|
||||
# Model
|
||||
'nhead': 2, # 5
|
||||
"dropout": 0.2,
|
||||
'hiden_dim': 2048,
|
||||
'num_layers': 6
|
||||
}
|
||||
# TODO set seeds
|
||||
|
||||
# Bootstrap Aggregating
|
||||
num_models = 2
|
||||
ensemble_models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores = bootstrap_aggregation(
|
||||
lambda: TransformerBinaryClassifier(
|
||||
embeddings=embedding_matrix,
|
||||
nhead=params['nhead'],
|
||||
num_layers=params['num_layers'],
|
||||
dim_feedforward=params['hidden_dim'],
|
||||
positional_dropout=params['positional_dropout'],
|
||||
classifier_dropout=params['classifier_dropout']
|
||||
).to(device),
|
||||
train_dataset,
|
||||
num_models=num_models,
|
||||
epochs=params['epochs'],
|
||||
batch_size=params['batch_size'],
|
||||
learning_rate=params['lr']
|
||||
)
|
||||
# Configs
|
||||
MODEL_NAME = 'transfomrer.pt'
|
||||
HIST_NAME = 'transformer_history'
|
||||
GLOVE_PATH = 'data/glove.6B.100d.txt'
|
||||
DATA_PATH = 'data/hack.csv'
|
||||
EMBEDDING_DIM = 100
|
||||
TEST_SIZE = 0.1
|
||||
VAL_SIZE = 0.1
|
||||
|
||||
# Ensemble Prediction on Testset
|
||||
ensemble_predictions = ensemble_predict(ensemble_models, test_dataset)
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
# Daten laden und vorbereiten
|
||||
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
||||
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
||||
|
||||
# Plotting
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
|
||||
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
||||
|
||||
# Plot Train and Validation Losses
|
||||
for i in range(num_models):
|
||||
ax1.plot(range(1, params['epochs'] + 1), all_train_losses[i], label=f"Train Model {i+1}")
|
||||
ax1.plot(range(1, params['epochs'] + 1), all_val_losses[i], label=f"Val Model {i+1}", linestyle='dashed')
|
||||
# Aufteilen der Daten
|
||||
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
||||
|
||||
ax1.set_title('Train and Validation Loss')
|
||||
ax1.set_xlabel('Epochs')
|
||||
ax1.set_ylabel('Loss')
|
||||
ax1.legend()
|
||||
# Dataset und DataLoader
|
||||
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
||||
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
||||
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
||||
|
||||
# Plot Train and Validation R²
|
||||
for i in range(num_models):
|
||||
ax2.plot(range(1, params['epochs'] + 1), all_train_r2_scores[i], label=f"Train Model {i+1}")
|
||||
ax2.plot(range(1, params['epochs'] + 1), all_val_r2_scores[i], label=f"Val Model {i+1}", linestyle='dashed')
|
||||
# Bootstrap Aggregation (Bagging) Training
|
||||
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
|
||||
TransformerBinaryClassifier, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
|
||||
|
||||
ax2.set_title('Train and Validation R²')
|
||||
ax2.set_xlabel('Epochs')
|
||||
ax2.set_ylabel('R²')
|
||||
ax2.legend()
|
||||
# Ensemble Prediction
|
||||
test_predictions = ensemble_predict(models, test_dataset)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
# Evaluation
|
||||
mse = mean_squared_error(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||
mae = mean_absolute_error(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||
r2 = r2_score(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||
|
||||
print(f"Ensemble MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
|
||||
# Test Evaluation
|
||||
# test_labels = np.array([y for _, y in test_dataset])
|
||||
|
||||
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
|
||||
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
|
||||
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
|
||||
|
||||
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
||||
|
|
|
|||
Loading…
Reference in New Issue