diff --git a/cnn_1b.ipynb b/cnn_1b.ipynb index 5b84e13..aca2ff1 100644 --- a/cnn_1b.ipynb +++ b/cnn_1b.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ "from torch.optim.lr_scheduler import ReduceLROnPlateau\n", "from sklearn.metrics import accuracy_score, f1_score, confusion_matrix\n", "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n" + "import seaborn as sns" ] }, { @@ -40,12 +40,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/l7/061cw0t95vz1myntpf9bj9540000gn/T/ipykernel_32265/1764171208.py:5: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", + " train_dataset = torch.load(data_path + '/train.pt')\n", + "/var/folders/l7/061cw0t95vz1myntpf9bj9540000gn/T/ipykernel_32265/1764171208.py:6: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", + " test_dataset = torch.load(data_path + '/test.pt')\n", + "/var/folders/l7/061cw0t95vz1myntpf9bj9540000gn/T/ipykernel_32265/1764171208.py:7: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", + " val_dataset = torch.load(data_path + '/val.pt')\n" + ] + } + ], "source": [ - "\n", - "\n", "data_path = 'data/embedded_padded'\n", "\n", "BATCH_SIZE = 32\n", @@ -77,12 +88,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "\n", - "\n", "class HumorCNN(nn.Module):\n", " def __init__(self, embedding_dim=100):\n", " super(HumorCNN, self).__init__()\n", @@ -114,7 +123,7 @@ " \n", " x = self.dropout(x)\n", " x = self.fc(x)\n", - " return torch.sigmoid(x)\n" + " return torch.sigmoid(x)" ] }, { @@ -128,13 +137,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/michellegoppinger/.pyenv/versions/3.12.3/lib/python3.12/site-packages/torch/optim/lr_scheduler.py:62: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.\n", + " warnings.warn(\n", + "/Users/michellegoppinger/Documents/Dokumente – Laptop von Michelle/Uni/Master/ANLP/CA2/ANLP_WS24_CA2/HumorDataset.py:21: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/torch/csrc/utils/tensor_new.cpp:281.)\n", + " item = {'input_ids': torch.tensor(self.data[idx], dtype=torch.float)}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10, Train Loss: 1.0778, Val Loss: 0.6097, Test Acc: 0.6734, Test F1: 0.6567\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.6734279918864098\n", + "Epoch 2/10, Train Loss: 0.7699, Val Loss: 0.5868, Test Acc: 0.7069, Test F1: 0.7175\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.7068965517241379\n", + "Epoch 3/10, Train Loss: 0.6620, Val Loss: 0.5702, Test Acc: 0.7373, Test F1: 0.7566\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.7373225152129818\n", + "Epoch 4/10, Train Loss: 0.6219, Val Loss: 0.5475, Test Acc: 0.7556, Test F1: 0.7692\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.755578093306288\n", + "Epoch 5/10, Train Loss: 0.6035, Val Loss: 0.5171, Test Acc: 0.7769, Test F1: 0.7804\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.7768762677484787\n", + "Epoch 6/10, Train Loss: 0.5956, Val Loss: 0.5026, Test Acc: 0.7926, Test F1: 0.8111\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.7925963488843814\n", + "Epoch 7/10, Train Loss: 0.5601, Val Loss: 0.4781, Test Acc: 0.8119, Test F1: 0.7978\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.8118661257606491\n", + "Epoch 8/10, Train Loss: 0.5375, Val Loss: 0.4429, Test Acc: 0.8281, Test F1: 0.8433\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.8280933062880325\n", + "Epoch 9/10, Train Loss: 0.5281, Val Loss: 0.4177, Test Acc: 0.8773, Test F1: 0.8818\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.8772819472616633\n", + "Epoch 10/10, Train Loss: 0.5041, Val Loss: 0.3977, Test Acc: 0.8813, Test F1: 0.8741\n", + "πŸš€ Bestes Modell gespeichert mit Test-Accuracy: 0.8813387423935092\n" + ] + } + ], "source": [ - "\n", - "\n", - "\n", "# Automatische GerΓ€teauswahl (Apple MPS, CUDA, CPU)\n", "if torch.backends.mps.is_available():\n", " device = torch.device(\"mps\") \n", @@ -240,11 +283,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/l7/061cw0t95vz1myntpf9bj9540000gn/T/ipykernel_32265/3375079771.py:1: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", + " model.load_state_dict(torch.load(\"best_model.pth\"))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "πŸš€ Finale Test Accuracy: 0.8813\n", + "πŸš€ Finale Test F1 Score: 0.8741\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAHWCAYAAADuNVprAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATa9JREFUeJzt3Ql8TFf7B/DnThKRRURSSah9KWKLpbVTtcRWFG2pJSXW176EasUSlKavvZYuitpau4qitlIEEaLWWFtrJEQSQSLL/D/P6X/mzSTBDDO5yZzft5/bmbn3zp0zEc5zn7MpWq1WSwAAACAdjdoFAAAAAHUgCAAAAJAUggAAAABJIQgAAACQFIIAAAAASSEIAAAAkBSCAAAAAEkhCAAAAJAUggAAAABJIQgAMNLly5epZcuWVLBgQVIUhbZs2WLW6//999/iusuXLzfrdfOyd999V2wAYBkIAiBPuXr1Kg0YMIDKlClD+fPnJxcXF2rQoAHNmzePnj59atHP9vPzozNnztD06dNp5cqVVLt2bbIWn376qQhA+OeZ3c+RAyA+ztt///tfk69/584dmjx5MkVERJipxABgDrZmuQpADti+fTt9+OGHZG9vT7169aIqVarQs2fP6NChQxQQEEDnzp2j7777ziKfzRVjaGgoffHFFzRkyBCLfEbJkiXF59jZ2ZEabG1t6cmTJ7Rt2zb66KOPDI6tXr1aBF1JSUmvdG0OAqZMmUKlSpUiHx8fo9/3+++/v9LnAYBxEARAnnD9+nXq2rWrqCj37dtHRYoU0R8bPHgwXblyRQQJlhITEyMeXV1dLfYZfJfNFa1aOLjirMratWuzBAFr1qyhtm3b0saNG3OkLByMODo6Ur58+XLk8wBkheYAyBOCg4MpMTGRli5dahAA6JQrV46GDx+uf52amkpTp06lsmXLisqN70A///xzSk5ONngf72/Xrp3IJrzzzjuiEuamhp9++kl/DqexOfhgnHHgyprfp0uj655nxO/h8zLavXs3NWzYUAQSzs7OVKFCBVGml/UJ4KCnUaNG5OTkJN7boUMHunDhQrafx8EQl4nP474LvXv3FhWqsT755BPasWMHxcXF6feFhYWJ5gA+lllsbCyNGTOGqlatKr4TNye0bt2aTp8+rT/njz/+oLfffls85/LomhV035Pb/DmrEx4eTo0bNxaVv+7nkrlPADfJ8J9R5u/v6+tLhQoVEhkHADAeggDIEzhFzZVz/fr1jTq/b9++NHHiRKpZsybNmTOHmjRpQjNmzBDZhMy44uzSpQu1aNGCZs2aJSoTrki5eYF16tRJXIN169ZN9AeYO3euSeXna3GwwUFIUFCQ+Jz27dvT4cOHX/i+PXv2iAouOjpaVPSjRo2iI0eOiDt2Dhoy4zv4R48eie/Kz7mi5TS8sfi7cgW9adMmgyxAxYoVxc8ys2vXrokOkvzdZs+eLYIk7jfBP29dhVypUiXxnVn//v3Fz483rvB1Hjx4IIIHbirgn23Tpk2zLR/3/ShcuLAIBtLS0sS+b7/9VjQbLFiwgIoWLWr0dwUAItIC5HLx8fFa/lXt0KGDUedHRESI8/v27Wuwf8yYMWL/vn379PtKliwp9h08eFC/Lzo6Wmtvb68dPXq0ft/169fFeV9//bXBNf38/MQ1Mps0aZI4X2fOnDnidUxMzHPLrfuMZcuW6ff5+PhoPTw8tA8ePNDvO336tFaj0Wh79eqV5fP69OljcM0PPvhA6+7u/tzPzPg9nJycxPMuXbpomzVrJp6npaVpvby8tFOmTMn2Z5CUlCTOyfw9+OcXFBSk3xcWFpblu+k0adJEHFuyZEm2x3jLaNeuXeL8adOmaa9du6Z1dnbWduzY8aXfEQCyQiYAcr2EhATxWKBAAaPO/+2338Qj3zVnNHr0aPGYue+At7e3SLfr8J0mp+r5LtdcdH0Jtm7dSunp6Ua95+7du6I3PWcl3Nzc9PurVasmsha675nRwIEDDV7z9+K7bN3P0Bic9ucUflRUlGiK4MfsmgIYN7VoNP/+M8J35vxZuqaOkydPGv2ZfB1uKjAGD9PkESKcXeDMBTcPcDYAAEyHIAByPW5nZpzmNsY///wjKibuJ5CRl5eXqIz5eEYlSpTIcg1uEnj48CGZy8cffyxS+NxM4enpKZol1q1b98KAQFdOrlAz4xT7/fv36fHjxy/8Lvw9mCnfpU2bNiLg+uWXX8SoAG7Pz/yz1OHyc1NJ+fLlRUX+xhtviCDqr7/+ovj4eKM/88033zSpEyAPU+TAiIOk+fPnk4eHh9HvBYD/QRAAeSII4Lbes2fPmvS+zB3znsfGxibb/Vqt9pU/Q9derePg4EAHDx4Ubfw9e/YUlSQHBnxHn/nc1/E630WHK3O+w16xYgVt3rz5uVkA9uWXX4qMC7fvr1q1inbt2iU6QFauXNnojIfu52OKU6dOiX4SjPsgAMCrQRAAeQJ3POOJgnis/stwT36ugLhHe0b37t0Tvd51Pf3Nge+0M/ak18mcbWCcnWjWrJnoQHf+/Hkx6RCn2/fv3//c78EiIyOzHLt48aK46+YRA5bAFT9XtJx9ya4zpc6GDRtEJz4etcHncaq+efPmWX4mxgZkxuDsBzcdcDMOdzTkkSM8ggEATIcgAPKEsWPHigqP0+lcmWfGAQL3HNels1nmHvxc+TIe724uPASR0958Z5+xLZ/voDMPpctMN2lO5mGLOjwUks/hO/KMlSpnRLg3vO57WgJX7DzE8ptvvhHNKC/KPGTOMqxfv55u375tsE8XrGQXMJlq3LhxdOPGDfFz4T9THqLJowWe93MEgOfDZEGQJ3Bly0PVOIXO7eEZZwzkIXNc8XAHOla9enVRKfDsgVzp8HC148ePi0qjY8eOzx1+9ir47pcrpQ8++ICGDRsmxuQvXryY3nrrLYOOcdyJjZsDOADhO3xOZS9atIiKFSsm5g54nq+//loMnatXrx75+/uLGQV5KBzPAcBDBi2FsxYTJkwwKkPD343vzHn4JqfmuR8BD+fM/OfH/TGWLFki+htwUFCnTh0qXbq0SeXizAn/3CZNmqQfsrhs2TIxl0BgYKDICgCACbIZMQCQa126dEnbr18/balSpbT58uXTFihQQNugQQPtggULxHA1nZSUFDGsrXTp0lo7Oztt8eLFtePHjzc4h/HwvrZt2750aNrzhgiy33//XVulShVRngoVKmhXrVqVZYjg3r17xRDHokWLivP4sVu3buL7ZP6MzMPo9uzZI76jg4OD1sXFRfv+++9rz58/b3CO7vMyD0Hka/F+vraxQwSf53lDBHkoZZEiRUT5uJyhoaHZDu3bunWr1tvbW2tra2vwPfm8ypUrZ/uZGa+TkJAg/rxq1qwp/nwzGjlypBg2yZ8NAMZT+H+mBA0AAABgHdAnAAAAQFIIAgAAACSFIAAAAEBSCAIAAAAkhSAAAABAUggCAAAAJIUgAAAAQFJWOWOgQ40hahcBwOIehn2jdhEALC6/bd6pL56eynt/J60yCAAAADCKIndCXO5vDwAAIDFkAgAAQF6K+Za5zosQBAAAgLwUuRPicn97AAAAiSETAAAA8lLQHAAAACAnRe6EuNzfHgAAQAWPHj2iESNGUMmSJcnBwYHq169PYWFh+uNarZYmTpxIRYoUEcebN29Oly9fNrhGbGwsde/enVxcXMjV1ZX8/f0pMTHRpHIgCAAAALmbAxQzbSbo27cv7d69m1auXElnzpyhli1bior+9u3b4nhwcDDNnz+flixZQseOHSMnJyfy9fWlpKQk/TU4ADh37py4TkhICB08eJD69+9v2tfXcrhhZTBjIMgAMwaCDCw+Y2DdcWa7VtyBIEpOTjbYZ29vL7aMnj59SgUKFKCtW7dS27Zt9ftr1apFrVu3pqlTp1LRokVp9OjRNGbMGHEsPj6ePD09afny5dS1a1e6cOECeXt7i+xB7dq1xTk7d+6kNm3a0K1bt8T7jYFMAAAAgBnMmDGDChYsaLDxvsxSU1MpLS2N8ufPb7Cf0/6HDh2i69evU1RUlMgM6PC16tSpQ6GhoeI1P3ITgC4AYHy+RqMRmQNjoWMgAADISzHf6IDx48fTqFGjDPZlzgIwzgLUq1dP3PFXqlRJ3OGvXbtWVOzlypUTAQDj/Rnxa90xfvTw8DA4bmtrS25ubvpzjIFMAAAAyD06QDHPxhU+d9LLuGUXBDDuC8Ct8W+++aY4h9v/u3XrJu7kcxKCAAAAgBxWtmxZOnDggOjNf/PmTTp+/DilpKRQmTJlyMvLS5xz7949g/fwa90xfoyOjs7SzMAjBnTnGANBAAAAyEul0QE63OufhwE+fPiQdu3aRR06dKDSpUuLinzv3r368xISEkRbPzcjMH6Mi4uj8PBw/Tn79u2j9PR00XfAWOgTAAAA8lLUuRfmCp+bAypUqEBXrlyhgIAAqlixIvXu3ZsURRFzCEybNo3Kly8vgoLAwEDR479jx47i/dyXoFWrVtSvXz8xjJCzCEOGDBEjB4wdGcAQBAAAAOQwHvLHHQl5OB935uvcuTNNnz6d7OzsxPGxY8fS48ePxbh/vuNv2LChGAKYcUTB6tWrRcXfrFkz0ZeAr8F9C0yBeQIA8ijMEwAysPg8AY0mmu1aT/8MorwGmQAAAJCXInfXOLm/PQAAgMSQCQAAAHkpct8LIwgAAAB5acw3Y2BeJHcIBAAAIDFkAgAAQF6K3PfCCAIAAEBeCpoDAAAAQELIBAAAgLwUue+FEQQAAIC8FDQHAAAAgISQCQAAAHkpct8LIwgAAAB5KWgOAAAAAAkhEwAAAPJS5L4XRhAAAADyUtAcAAAAABJCJgAAAOSlyH0vjCAAAADkpaA5AAAAACSETAAAAMhLkfteGEEAAADIS5E7CJD72wMAAEgMmQAAAJCXInfHQAQBAAAgL0XuhLjc3x4AAEBiyAQAAIC8FDQHAAAAyEmROyEu97cHAACQGDIBAAAgLwXNAQAAAFJSJA8C0BwAAAAgKWQCAABAWorkmQAEAQAAIC+FpIbmAAAAgByWlpZGgYGBVLp0aXJwcKCyZcvS1KlTSavV6s/h5xMnTqQiRYqIc5o3b06XL182uE5sbCx1796dXFxcyNXVlfz9/SkxMdHociAIAAAAqZsDFDNtpvjqq69o8eLF9M0339CFCxfE6+DgYFqwYIH+HH49f/58WrJkCR07doycnJzI19eXkpKS9OdwAHDu3DnavXs3hYSE0MGDB6l///7Gf39txrDDSjjUGKJ2EQAs7mHYN2oXAcDi8lu40brAxyvMdq37P3Wl5ORkg3329vZiy6xdu3bk6elJS5cu1e/r3LmzuONftWqVyAIULVqURo8eTWPGjBHH4+PjxXuWL19OXbt2FcGDt7c3hYWFUe3atcU5O3fupDZt2tCtW7fE+18GmQAAAAAzmDFjBhUsWNBg433ZqV+/Pu3du5cuXbokXp8+fZoOHTpErVu3Fq+vX79OUVFRoglAh69Xp04dCg0NFa/5kZsAdAEA4/M1Go3IHBgDHQMBAEBaihlHB4wfP55GjRplsC+7LAD77LPPKCEhgSpWrEg2Njaij8D06dNFep9xAMD4zj8jfq07xo8eHh4Gx21tbcnNzU1/zssgCAAAAGkpZgwCnpf6z866deto9erVtGbNGqpcuTJFRETQiBEjRArfz8+PcgqCAAAAgBwWEBAgsgHcts+qVq1K//zzj2g+4CDAy8tL7L93754YHaDDr318fMRzPic6OtrguqmpqWLEgO79L4M+AQAAIC/FjJsJnjx5ItruM+JmgfT0dPGchw5yRc79BnS4+YDb+uvVqyde82NcXByFh4frz9m3b5+4BvcdMAYyAQAAIC1FpRkD33//fdEHoESJEqI54NSpUzR79mzq06ePvlzcPDBt2jQqX768CAp4XgFuLujYsaM4p1KlStSqVSvq16+fGEaYkpJCQ4YMEdkFY0YGqB4E8BCImzdvio4N+fPnV7MoAAAAOYbnA+BK/T//+Y9I6XOlPWDAADE5kM7YsWPp8ePHYtw/3/E3bNhQDAHMWF9yvwKu+Js1ayYyCzzMkOcWyBPzBHDKgr8MT3TAkY65YJ4AkAHmCQAZWHqegEI9VpvtWg9X/duzPy9RtU8ARy1c+T948EDNYgAAgKQUlWYMzC1U7xg4c+ZM0Uvy7NmzahcFAABAKqp3DOzVq5foJVm9enXKly+fmDIxIx7qAAAAYAlKHr2Dt5ogYO7cuWoXAQAAZKWQ1FQPAnJyZiQAAADIRUEA4zmTt2zZIlZEYjxmsn379mLiBAAAAEtR0BygritXrohlD2/fvk0VKlQQ+3jaxOLFi9P27dupbNmyahcRAACslCJ5EKD66IBhw4aJip4nDTp58qTYbty4IWZH4mMAAABgpZmAAwcO0NGjR8XShzru7u5i6GCDBg1ULRsAAFg3RfJMgOpBAC+7+OjRoyz7ExMTxZBBAAAAi1FIaqo3B7Rr107Mi8wrI/EMxrxxZmDgwIGicyAAAABYaRDACx1wnwBeEpHXEeCNmwHKlStH8+bNU7t4AABgxRTJpw1WvTnA1dWVtm7dSpcvX6aLFy/ql0fkIAAAAMCSlDxaeVtNEKDDCwmZcyVBAAAAyOVBAPcB2LBhA+3fv1+sqczLC2e0adMm1coGAADWTUEmQF0jRoygb7/9lpo2bUqenp7S/4EAAEDOUSSvc1QPAlauXCnu9nnWQAAAAJAoCChYsCCVKVNG7WIAAICMFJKa6kMEJ0+eTFOmTKGnT5+qXRQAAJCMgiGC6vroo49o7dq15OHhQaVKlSI7OzuD47yWAAAAAFhhEODn50fh4eHUo0cPdAwEAIAcpUhe56geBPBywbt27aKGDRuqXRQAAJCMInkQoHqfgOLFi5OLi4vaxQAAAJCO6kHArFmzaOzYsfT333+rXRQAAJCNYsYtD1K9OYD7Ajx58kQsIuTo6JilY2BsbKxqZQMAAOumSN4coHoQMHfuXLWLAAAAIKVcMToAAABADQoyAeq6cePGC4+XKFEix8oChpwd7WnSf9pR+/eqU+FCznQ68haNCd5A4edvkK2thib/533ybViZShdzp4TEJNp37CIFzv+V7sbEG1ynVcPK9Hn/1lSlfFFKepZKh8Iv00ejvlftewG8SOsW79GdO7ez7P+46yf0eeAk2rDuF9rxWwhdOH+OHj9+TH+GhqFzcx6mIAhQF08Q9KI/hLS0tBwtD/zP4omfkHe5otRnwgpRsXdr8w5tXzKUanaeRolPk8mnUnGa+f0O+uvSbSrk4kj/DehC6+cOoIbdg/XX6NjMhxYGdqNJ32yjP45fEsFD5bJFVP1eAC+y+pcNlJ7h350rVy7TgL69qYVvK/E6Kekp1W/QSGzz585SsaQAVhAEnDp1yuB1SkqK2Dd79myaPn26auWSXX57O1GBfzjyOzp88qrYN/3b36hN4yrU78NGNGVRCLUb9I3Be0bOXEeHVo+l4l6F6GbUQ7Kx0dB/AzrT53O30IotofrzLl6LyvHvA2AsNzc3g9c//vAdFS9egmq//Y543aPXp+Ix7PgxVcoH5qUgE6Cu6tWrZ9lXu3ZtKlq0KH399dfUqVMnVcolO1sbDdna2lDSsxSD/UnJKVS/Rtls3+NSwIHS09Mp7tG/60DUqFic3vQsROnpWgpdO4483V3or0u36PM5W+j81bs58j0AXkfKs2e0PeRX6unXW/rKwmopJDXV5wl4ngoVKlBYWNhLz0tOTqaEhASDTZuOJoTXlfgkmY6evkbj+7WmIoULkkajUNc2b1OdaqXJ642s7Z/2+Wxp2rAOtG5nOD16nCT2lS72hnicMLANffXDLuo8fAnFJTylXd8PF80HALndvn176NGjR9S+4wdqFwXAOoOAzBV4fHw8Xbx4kSZMmEDly5d/6ftnzJghliPOuKXeC8+Rslu7PhN+Ir75ufb7dIo/NpcGd2tC63aeEHf2GXE7/6pgf3GnNOzLX/T7Nf9/58QBwJa9EXTqwk3qP2kVaUlLnVrUyPHvA2CqzRs3UoOGjcnDw1PtooCFKFhFUF2urq5ZfnharVZMJ/zzzz+/9P3jx4+nUaNGGezzaDTO7OWU0fVb96ll33nkmD8fuTjnp6j7CbRyZm+6fvu+QQCw+it/KlGkELXuv0CfBWB37/87SuDitf+l/p+lpNLftx5QcS/DdleA3IZHCBw7eoRmz1ugdlHAgpQ8WnlbTSZg//79tG/fPv32xx9/0Pnz5+nq1atUr169l77f3t5eDM/JuCkamxwpuyyeJD0TAYBrAQdqXr8ShfxxxiAAKFuiMLUd+A3Fxj82eB/f+XMfgvKl/ncXxe8pUdSNbtzFTJCQu23dvInc3NypUeN31S4KWKFS/z8yLvM2ePBgcTwpKUk8d3d3J2dnZ+rcuTPdu3cvyxD7tm3bitl2PTw8KCAggFJTU/NWJqBJkyZqFwGeo3m9SqI54NLf0VS2eGH6cmRHunT9Hv30a6iozNd83Vd0/us0fAnZaBTydC8g3hcb/4RSUtNEVuCHDYcocGAbuhX1UFT8I/2ai3M27T6p8rcDeD7u4MpBwPsdOpKtreE/k/djYuj+/ft08//nOLly+RI5OjpRkSJFqKCrq0olhlelqJQI4D5vGYfAnz17llq0aEEffviheD1y5Eixyu769etFM/eQIUNER/nDhw+L4/xeDgC8vLzoyJEjdPfuXerVq5eYev/LL780uhyKlnPvKvj111+NOq99+/YmX9uhxpBXKBFk1rlFDQoa2p7e9HQVFfvWvRE0aeE2MTFQiSJuFPlbULbv4yaEP8Mvi+ccLEwd2oG6tX2bHOztKOzsPxTw9Qa6gGGCr+1hmOEQTTCfI4cP0aD+/rR1+04qVaq0wbHFCxfQkkVZf/ZB02ZQhw8wmsnc8lv4VrV8wE6zXevstKais3rmbDVvLzNixAgKCQmhy5cvi/5xhQsXpjVr1lCXLl3Ece4rV6lSJQoNDaW6devSjh07qF27dnTnzh3y9Pw327pkyRIaN24cxcTEUL58+XJ3EKDRGLZEcBokc1F436tMFoQgAGSAIABkkJeCgO5OR2nKlCkG+yZNmkSTJ09+4fuePXsmhsVz/7bPP/9cNI03a9aMHj58KPrN6ZQsWVIEC5wlmDhxoriZjoiI0B+/fv06lSlThk6ePEk1atTI3c0BnG7LqECBAnT69GnxBQAAAPJac8D4bDqqG5MF2LJlC8XFxdGnn/47EVVUVJS4k88YADC+4+djunN0GYCMx3XH8kyfAAAAAGsYHWBvZOo/s6VLl1Lr1q1FNkC60QEAAACy+ueff2jPnj3Ut29f/T7u7MdNBJwdyIhHB/Ax3TmZRwvoXuvOMQaCAAAAkJaimG97FcuWLRPD+7inv06tWrVEL/+9e/fq90VGRoohgbqh8/x45swZio6O1p+ze/duMUze29s77zUH5OUZlwAAIG/SaNSrd7hvHAcBfn5+BkNReUigv7+/6F/AC1pxxT506FBR8fPIANayZUtR2ffs2ZOCg4NFPwCeaZfnFjClSUK1IKBQoUIGlX5iYqLozZh51EBsLCaVAQAA67Nnzx5xd9+nT58sx+bMmSPqQ54kiIcd+vr60qJFi/THbWxsxJDCQYMGieDAyclJBBNBQdkP3c51QwRXrFhh1Hn8pUyFIYIgAwwRBBlYeohg5S9+N9u1zk1vSXmNapmAV6ncAQAAwHxyTZ8AAACAnKZI3hcNQQAAAEhLkTsGwBBBAAAAWSETAAAA0lIkTwXkqiBAN1BB9j8UAADIGYrk9U2uaA746aefqGrVquTg4CC2atWq0cqVK9UuFgAAgFVTPRMwe/ZsCgwMpCFDhlCDBg3EvkOHDtHAgQPp/v37YslEAAAAS1DkTgSoHwQsWLCAFi9eTL169dLva9++PVWuXFmswYwgAAAALEWRPApQvTng7t27VL9+/Sz7eR8fAwAAACsNAsqVK0fr1q3Lsv+XX36h8uXLq1ImAACQg6LyKoIke3PAlClT6OOPP6aDBw/q+wQcPnxYLKGYXXAAAABgLkperb2tJRPAKyQdO3aM3njjDdqyZYvY+Pnx48fpgw8+ULt4AAAAVkv1TACrVasWrVq1Su1iAACAZBS5EwG5IwgAAABQgyJ5FKBaEKDRaF76w+fjqampOVYmAAAAmagWBGzevPm5x0JDQ2n+/PmUnp6eo2UCAAC5KHInAtQLAjp06JBlX2RkJH322We0bds26t69OwUFBalSNgAAkIMieRSg+ugAdufOHerXr59YP4DT/xEREbRixQoqWbKk2kUDAACwWqoGAfHx8TRu3DgxYdC5c+fE3ACcBahSpYqaxQIAAEkomCxIHcHBwfTVV1+Rl5cXrV27NtvmAQAAAEtS8mrtndeDAG7752WDOQvAqX/esrNp06YcLxsAAIAMVAsCeNVA2SMwAABQlyJ5NaRaELB8+XK1PhoAAECQ/WY0V4wOAAAAgJyHaYMBAEBaityJAAQBAAAgL0XyKADNAQAAAJJCJgAAAKSlSJ4JQBAAAADSUuSOAdAcAAAAICtkAgAAQFqK5KkABAEAACAtRe4YAM0BAAAAskIQAAAAUjcHKGbaTHX79m3q0aMHubu7iwX1qlatSidOnNAf12q1NHHiRCpSpIg43rx5c7p8+bLBNWJjY6l79+7k4uJCrq6u5O/vT4mJiUaXAUEAAABIS1HMt5ni4cOH1KBBA7Kzs6MdO3bQ+fPnadasWVSoUCH9OcHBwTR//nxasmQJHTt2jJycnMjX15eSkpL053AAcO7cOdq9ezeFhITQwYMHqX///sZ/fy2HGlbGocYQtYsAYHEPw75RuwgAFpffwj3Xmi0INdu19g6tZ/S5n332GR0+fJj+/PPPbI9z1Vy0aFEaPXo0jRkzRuyLj48nT09PsQBf165d6cKFC+Tt7U1hYWFUu3Ztcc7OnTupTZs2dOvWLfH+l0EmAAAApKVRFLNtycnJlJCQYLDxvuz8+uuvouL+8MMPycPDg2rUqEHff/+9/vj169cpKipKNAHoFCxYkOrUqUOhof8GLvzITQC6AIDx+RqNRmQOjPr+r/GzAwAAyNMUMzYHzJgxQ1TUGTfel51r167R4sWLqXz58rRr1y4aNGgQDRs2jFasWCGOcwDA+M4/I36tO8aPHEBkZGtrS25ubvpzXgZDBAEAAMxg/PjxNGrUKIN99vb22Z6bnp4u7uC//PJL8ZozAWfPnhXt/35+fpRTkAkAAABpKWYcHcAVPvfSz7g9LwjgHv/cnp9RpUqV6MaNG+K5l5eXeLx3757BOfxad4wfo6OjDY6npqaKEQO6c14GQQAAAEhLo5hvMwWPDIiMjDTYd+nSJSpZsqR4Xrp0aVGR7927V3+c+xhwW3+9ev92QOTHuLg4Cg8P15+zb98+kWXgvgPGQHMAAABADhs5ciTVr19fNAd89NFHdPz4cfruu+/ExjizMGLECJo2bZroN8BBQWBgoOjx37FjR33moFWrVtSvXz/RjJCSkkJDhgwRIweMGRnAEAQAAIC0FJXmDX777bdp8+bNoh9BUFCQqOTnzp0rxv3rjB07lh4/fizG/fMdf8OGDcUQwPz58+vPWb16taj4mzVrJkYFdO7cWcwtYCzMEwCQR2GeAJCBpecJaPvtcbNda/uAdyivQZ8AAAAASaE5AAAApKWQ3MsIIggAAABpaeSOAdAcAAAAICtkAgAAQFqKSqMD8lQQ8Ndffxl9wWrVqr1OeQAAAHKMIncMYFwQ4OPjI6Kl540m1B3jx7S0NHOXEQAAANQKAnhJQwAAAGujkTwVYFQQoJvLGAAAwJoocscArzY6YOXKlWLxA56b+J9//hH7eLrDrVu3mrt8AAAAkFuCgMWLF4v1ktu0aSPmMtb1AXB1dRWBAAAAgIxLCUsRBCxYsIC+//57+uKLL8jGxka/v3bt2nTmzBlzlw8AAMBiFMV8mxRBAHcSrFGjRpb99vb2YrUjAAAAsNIggJc7jIiIyLKflzfktY0BAADy0ugAjZk2KWYM5P4AgwcPpqSkJDE3wPHjx2nt2rU0Y8YM+uGHHyxTSgAAAAtQSG4mBwF9+/YlBwcHmjBhAj158oQ++eQTMUpg3rx51LVrV8uUEgAAAHLH2gHdu3cXGwcBiYmJ5OHhYf6SAQAAWJiSR9P4qi8gFB0dTZGRkfofYuHChc1ZLgAAAIvTyB0DmN4x8NGjR9SzZ0/RBNCkSROx8fMePXpQfHy8ZUoJAAAA6gcB3Cfg2LFjtH37djFZEG8hISF04sQJGjBggPlLCAAAYCGK5JMFmdwcwBX+rl27qGHDhvp9vr6+YgKhVq1ambt8AAAAFqPkzbpbvUyAu7s7FSxYMMt+3leoUCFzlQsAAAByWxDAQwN5roCoqCj9Pn4eEBBAgYGB5i4fAACAxShoDng5niY44xe8fPkylShRQmzsxo0bYtrgmJgY9AsAAIA8Q5M36+6cDQI6duxo+ZIAAABA7gsCJk2aZPmSAAAA5DAlj6bxVZ8sCAAAIK9TSG4mBwFpaWk0Z84cWrdunegL8OzZM4PjsbGx5iwfAAAA5JbRAVOmTKHZs2fTxx9/LGYI5JECnTp1Io1GQ5MnT7ZMKQEAACxAI/lSwiYHAatXrxYTA40ePZpsbW2pW7duYgnhiRMn0tGjRy1TSgAAAAtQFPNtUgQBPCdA1apVxXNnZ2f9egHt2rUTUwkDAACAlQYBxYoVo7t374rnZcuWpd9//108DwsLE3MFAAAA5BWK5JMFmRwEfPDBB7R3717xfOjQoWKWwPLly1OvXr2oT58+ligjAACARSiSNweYPDpg5syZ+ufcObBkyZJ05MgREQi8//775i4fAAAA5JZMQGZ169YVIwTq1KlDX375pXlKBQAAYMWjAyZPnpylOaFixYr640lJSTR48GCxaB/3v+vcuTPdu3fP4Bo8TL9t27bk6OhIHh4eYg2f1NRU074/mQn3E8ACQgAAkJcoKjYHVK5cWdSduu3QoUP6YyNHjqRt27bR+vXr6cCBA3Tnzh0xHD/jnD0cAPBcPZyNX7FiBS1fvlyM1DMFZgwEAABQAQ+z9/LyyrKfR90tXbqU1qxZQ++9957Yt2zZMqpUqZIYis8ZeO6Uf/78edqzZw95enqSj48PTZ06lcaNGyeyDPny5cvZTAAAAIDMowOSk5MpISHBYON9z8Mr8hYtWpTKlClD3bt3F+l9Fh4eTikpKdS8eXP9udxUwCv3hoaGitf8yMP1OQDQ8fX1FZ957tw5uTMBl/bOUrsIABbn3nWZ2kUAsLjHG3pb9PoaM15rxowZYlbdzAvwZTebLvej4/R9hQoVRFMAv69Ro0Z09uxZMR8P38m7uroavIcrfD7G+DFjAKA7rjtm9iCAO/+9SExMjNEfCgAAYG3Gjx+fpa583vw5rVu31j+vVq2aCAp4tB2vy+Pg4EA5xegg4NSpUy89p3Hjxq9bHgAAgByjmHGAP1f4rzppHt/1v/XWW3TlyhVq0aKF6PAXFxdnkA3g0QG6PgT8ePz4cYNr6EYPZNfP4LWDgP379xt9UQAAgLxAk0sm+UlMTKSrV69Sz549qVatWmRnZycm5uOhgSwyMlL0GahXr554zY/Tp0+n6OhoMTyQ7d69m1xcXMjb21vuPgEAAAC52ZgxY8QEe9wEwMP/uO+AjY2NWJSvYMGC5O/vL5oW3NzcRMXOM/Ryxc8jA1jLli1FZc9BQ3BwsOgHMGHCBDG3gCnZCAQBAAAgLY1KmYBbt26JCv/BgwdUuHBhatiwoRj+x8/ZnDlzSKPRiEwAjzDgnv+LFi3Sv58DhpCQEBo0aJAIDpycnMjPz4+CgoJMKoei1Wq1ZGVuxj5/SAaAtajYf43aRQDI86MDRm+LNNu1Zr1fgfIazBMAAAAgKTQHAACAtDS5pGNgnsoE/Pnnn9SjRw/RDnH79m2xb+XKlQbzHgMAAOR2iuRLCZscBGzcuFF0UODJDHjuAN2UiDzXMVYRBAAAsOIgYNq0abRkyRL6/vvvxThGnQYNGtDJkyfNXT4AAACrW0o4z/YJ4AkLspsZkMc18uxGAAAAeYWG5Gby9+fpCHlaw8y4PwCvhAQAAABWGgT069ePhg8fTseOHRNzLvNMR6tXrxazH/GkBQAAAHmFInnHQJObAz777DNKT0+nZs2a0ZMnT0TTAE9RyEEAT2sIAACQV2jyau2tVhDAd/9ffPEFBQQEiGYBXvSA5y92dna2TAkBAAAgd00WlC9fPpNWKgIAAMhtFLkTAaYHAU2bNn3h+sv79u173TIBAADkCA2CANP4+PgYvE5JSaGIiAg6e/asWMEIAAAArDQI4OUNszN58mTRPwAAACCv0EjeHmC2eRJ4LYEff/zRXJcDAACwOEXyIYJmCwJCQ0Mpf/785rocAAAA5LbmgE6dOhm81mq1dPfuXTpx4gQFBgaas2wAAAAWpcmjd/CqBQG8RkBGGo2GKlSoQEFBQdSyZUtzlg0AAMCiFJI7CjApCEhLS6PevXtT1apVqVChQpYrFQAAAOSuPgE2Njbibh+rBQIAgLU0B2jMtEnRMbBKlSp07do1y5QGAAAgB2kQBJhm2rRpYrGgkJAQ0SEwISHBYAMAAAAr6xPAHf9Gjx5Nbdq0Ea/bt29vMH0wjxLg19xvAAAAIC9Q8uoA/5wOAqZMmUIDBw6k/fv3W7ZEAAAAOUQjdwxgfBDAd/qsSZMmliwPAAAA5MYhgrKnTQAAwLookldrJgUBb7311ksDgdjY2NctEwAAQI7QSB4FmBQEcL+AzDMGAgAAgARBQNeuXcnDw8NypQEAAMhBGrkTAcYHAegPAAAA1kaRvGrTmDo6AAAAACTLBKSnp1u2JAAAADlMg1UEAQAA5KTIHQOYvnYAAAAAWAcEAQAAIC1NLlhFcObMmaLz/YgRI/T7kpKSaPDgweTu7k7Ozs7UuXNnunfvnsH7bty4QW3btiVHR0cxci8gIIBSU1NN+/6vXmwAAIC8P1mQxkzbqwgLC6Nvv/2WqlWrZrB/5MiRtG3bNlq/fj0dOHCA7ty5Q506ddIf58X6OAB49uwZHTlyhFasWEHLly+niRMnmvb9X6nUAAAA8FoSExOpe/fu9P3331OhQoX0++Pj42np0qU0e/Zseu+996hWrVq0bNkyUdkfPXpUnPP777/T+fPnadWqVeTj40OtW7emqVOn0sKFC0VgYCwEAQAAIC1FMd+WnJxMCQkJBhvvex5O9/PdfPPmzQ32h4eHU0pKisH+ihUrUokSJSg0NFS85seqVauSp6en/hxfX1/xmefOnTP6+yMIAAAAaWnM2BwwY8YMMbV+xo33Zefnn3+mkydPZns8KiqK8uXLR66urgb7ucLnY7pzMgYAuuO6Y8bCEEEAAAAzGD9+PI0aNcpgn729fZbzbt68ScOHD6fdu3dT/vz5SU3IBAAAgLQUMzYHcIXv4uJisGUXBHC6Pzo6mmrWrEm2trZi485/8+fPF8/5jp7b9ePi4gzex6MDvLy8xHN+zDxaQPdad44xEAQAAIC0NGbcjNWsWTM6c+YMRURE6LfatWuLToK653Z2drR37179eyIjI8WQwHr16onX/MjX4GBChzMLHHh4e3sbXRY0BwAAAOSgAgUKUJUqVQz2OTk5iTkBdPv9/f1F04Kbm5uo2IcOHSoq/rp164rjLVu2FJV9z549KTg4WPQDmDBhguhsmF324XkQBAAAgLSUXDpv8Jw5c0ij0YhJgniEAff8X7Rokf64jY0NhYSE0KBBg0RwwEGEn58fBQUFmfQ5itYKlwe8Gfv8IRkA1qJi/zVqFwHA4h5v6G3R6/904qbZrtWrdnHKa9AnAAAAQFJoDgAAAGlpcmlzQE5BEAAAANJSSG5oDgAAAJAUMgEAACAtRfJUAIIAAACQliJ5FIDmAAAAAEkhEwAAANLSkNwQBAAAgLQUNAcAAACAjJAJAAAAaSkkNwQBAAAgLQXNAQAAACAjZAIAAEBaGpIbggAAAJCWguYAAAAAkBEyAQAAIC2F5IYgAAAApKVIHgWgOQAAAEBSyAQAAIC0NJI3CCAIAAAAaSlyxwBoDgAAAJAVMgEAACAtBc0BAAAAclLkjgHQHAAAACAr1YOAlJQUKlu2LF24cEHtogAAgISjAzRm2vIi1ZsD7OzsKCkpSe1iAACAhJS8WXdbTyaADR48mL766itKTU1VuygAAADSUD0TwMLCwmjv3r30+++/U9WqVcnJycng+KZNm1QrGwAAWC9F8kxArggCXF1dqXPnzmoXAwAAJKPk0bZ8qwoCli1bpnYRAAAApJMrggCdmJgYioyMFM8rVKhAhQsXVrtIAABgxTRyJwJyR8fAx48fU58+fahIkSLUuHFjsRUtWpT8/f3pyZMnahcPAACsuDlAMdN/eVGuCAJGjRpFBw4coG3btlFcXJzYtm7dKvaNHj1a7eIBAABYpVwRBGzcuJGWLl1KrVu3JhcXF7G1adOGvv/+e9qwYYPaxQMAACseHaCYaTPF4sWLqVq1avo6r169erRjxw79cZ4/h4fPu7u7k7Ozs+g8f+/ePYNr3Lhxg9q2bUuOjo7k4eFBAQEBJg+1zxVBAKf8PT09s+znL4XmAAAAsLbmgGLFitHMmTMpPDycTpw4Qe+99x516NCBzp07J46PHDlSZMfXr18vsuJ37tyhTp066d+flpYmAoBnz57RkSNHaMWKFbR8+XKaOHGiad9fq9VqSWXNmjUT0c5PP/1E+fPnF/uePn1Kfn5+FBsbS3v27DHpejdjky1UUoDco2L/NWoXAcDiHm/obdHr/xEZa7ZrvVvB7bXe7+bmRl9//TV16dJFdIxfs2aNeM4uXrxIlSpVotDQUKpbt67IGrRr104EB7qb6CVLltC4ceNEJ/t8+fLlndEB8+bNI19fXxEZVa9eXew7ffq0CAh27dqldvEAAMBKaczYny85OVlsGdnb24vtRfiunu/4uZM8NwtwdoDX1WnevLn+nIoVK1KJEiX0QQA/8uR6GbPoXI8OGjRIZBNq1KiRd5oDqlSpQpcvX6YZM2aQj4+P2DhNwvsqV66sdvEAAMBKKWb8j+uwggULGmy873nOnDkj2vs5SBg4cCBt3ryZvL29KSoqStzJ80R6GXGFz8cYP2ZuRte91p2TZzIBjDs29OvXT+1iQAZ/nTpB61Yvp8uRF+jB/RiaMnMuNWjynsE5//x9jX5YOIdOnwqn9LRUKlG6LE36cjZ5ehURx+fMDKKTJ47Sg5gYcnB0JO+q1anff0ZSiVKlVfpWAP+j0Sj0xUc+1LVRWfJ0daC7D5/Qqj+u0FcbTuvPaV+nJPVtWYF8yriTe4H8VG/MVvrr7/+lkAs556MvPqpBzaq/ScXfcKL7CUm0LewGTf35JCU8SVHpm4Eaxo8fL0a7ZfSiLADPhxMREUHx8fGiEzw3gXP7f07KNUEAt2scOnSIoqOjKT093eDYsGHDVCuXzJKSnlKZ8hWoVbsPaPL4kVmO37l1k0YM8KPW739Avfr+h5ycnOnv61cM2qLKV/SmZr5tyMOrCD1KiKefflhM40YMoFUbd5CNjU0OfyMAQ6M6VqW+LStS/2/+pAs346hmWXdaMrgRJTx5Rot/+3d5cyd7Wzpy4R5tPHKdFg1qmOUaRQo5UhE3R/r8pzC6eCuOShR2pnn964n9PWbtV+FbgVprB9gbkfrPiP+tLFeunHheq1YtsY4ON49//PHHosMfD5fPmA3g0QFeXl7iOT8eP37c4Hq60QO6c/JMEMA9GgcMGCB+INxBUMnwp8LPEQSo4516jcT2PD9+u4Dq1G9E/Yf8L/ItWqy4wTntOv7bqYV5FXmTeg8YSv17dqF7d+9kORcgp9Wt4EHbw27QrpO3xOsbMYn0YcMyVLscz1b6bxCw9uBV8ciVe3bO34yj7v/9X2V//d4jmrL2JC0d1phsNAqlpave9xpeQKHcg2+AuU8BBwR2dnZiYT3dujo8my4PCeQ+A4wfp0+fLm6ceSQd2717txhuyE0KeSoICAwMFMMaOJWi0eSKbgpgxC/rsSMH6ePuvWnciIF09dIFUcl369U3S5OBztOnT2hnyBbyKvomFfY0PlIFsJSjkdHUp/lbVK6IC125m0BVSxai+hU96bMVhndYpnJxtBNNAQgA4Hm4vuO5cbiz36NHj8RIgD/++EN0hue+BDxjLjct8IgBrtiHDh0qKn7uFMhatmwpKvuePXtScHCw6AcwYcIEMbeAKdmIXBEE8FwAXbt2faUAILvemPzSlB8CmC7uYSw9ffKEfl65lD7tP5T6/WcEhR09LJoN/vvNUqpes7b+3K0bf6bvF86hpKdPqXiJUhQ87zsR5QKobdbmv8jFwY5OzeskKmy+c5+yNpx++fPaK1/TvYA9fdbFh5bt+XcdFMjdNCqtJcx38L169aK7d++KSp8nDuIAoEWLFuL4nDlzRJ3ImQCu47jn/6JFi/Tv5+bUkJAQMRqAgwMnJyfRpyAoKMikcuSKIIAjHh4e8dlnn5n8Xu55OWXKFIN9I8Z+QaPGBZqxhJCZrt9GvUZNqUu3nuJ5ubcq0vkzERSyZZ1BENDMty3Veqcexd6PofVrVtDUCWNo3rc/UT4EaqCyzvVL08eNylLveQdEn4Bqpdzoq97v0N3Yp7T6wBWTr1fAwY42ft5C9A2Yvu6URcoM1tEcsHTp0hce5yHyCxcuFNvzlCxZkn777bfXKkeuCAK4IudJD3bu3CnGPWa+S5w9e7ZJvTGjH1usqPD/CroWIhsbWypZuqzB/hKlytDZ04b/+Dk7FxBbseIlqVKV6vRBywZ06MBeeq9lmxwuNYCh6T3fpllb/qINh6+L1+duPKTihZ1pdKeqJgcBzvltacuElpT4NIW6Bu+j1DQ0BUDul2uCAE6D8HAJlrljoKm9MeNTMWOgpXGgVqFSZbp142+D/bdu/CNGAjwPT1DJc1TyRBgAanOwt6H0TO32nOUyNUXMGYCtE1pScmoafThzDyWnpJm5pCBFz0BZg4BZs2bRjz/+SJ9++qnaRYEMuM3/9q0b+td379ymK5cuUgGXgmIegI+6f0rTAgOoqk9N8qn5jugTEHr4AM1a+G+a687tW/THnp1Uu059kTm4H31P9CHgZoB36mUdagWQ03acuEljO1enm/cfi+aA6qXdaEi7KrRy/2WDeQCKv+Eshvyx8kULisd7cU/FxgHAr4EtydHelvyDD5KLYz5y+fdUiklIyhJkQO6iSB4F5Iq1A3hM459//knly5c3y/WwdoB5RJwMozGD/bPsb9mmPY0NnCae79i2mX7+aSnFRN+j4iVLifkCGjRuKo7dj4mm2TMm06WL5ynxUQIVcnOnqj61qGefAVS8JCYLel1YO+D1cQp/Ytea9H6dklTYJb+YLGj9oes0Y0MEpaT+2++lx7vl6NshWYfKcpv/l+siqFFlL9o5pXW21680aL0Ydgi5d+2AY1fjzXatOmX/DRDzklwRBHBzAPeQnD9/vlmuhyAAZIAgAGRg6SDg+DXzBQHvlMl7QUCuaA7gWY/27dsnhjvwWgGZOwZu2rRJtbIBAID1UkhuuSII4GkRM66TDAAAAJIEAcuWLVO7CAAAICOFpJYrggAAAAA1KJJHAbkiCChduvQL5wO4du3Vp/AEAACAXBwEjBgxwuA1TyRz6tQpMYNgQECAauUCAADrpsidCMgdQcDw4cOz3c9zJp84cSLHywMAACCDXL1uLy+zuHHjRrWLAQAAVkox45YX5YpMwPNs2LBBrKUMAABgEQpJLVcEATVq1DDoGMiTGEZFRVFMTIzB+skAAABgZUFAhw4dDIIAjUZDhQsXpnfffZcqVqyoatkAAMB6KZKnAlQNAhISEsTjqFGjXniOi4tLDpYKAABkocgdA6gbBPB0wS+aH4CbBfh4WhrW5gYAALCqIGD//v0GFX6bNm3ohx9+oDfffFPNYgEAgCQUkpuqQUCTJk0MXtvY2FDdunWpTJkyqpUJAAAkopDUcvU8AQAAAGDlowMAAADUoEieCsh1QcCLOgoCAACYkyJ5laNqENCpUyeD10lJSTRw4EBycnIy2L9p06YcLhkAAID1UzUIKFiwoMHrHj16qFYWAACQj0JyUzUIWLZsmZofDwAAslNIahgdAAAAIKlc1zEQAAAgpyiSpwIQBAAAgLQUuWMANAcAAADICpkAAACQlkJyQxAAAADyUkhqaA4AAACQFDIBAAAgLUXyVAAyAQAAIPXoAMVMmylmzJhBb7/9NhUoUIA8PDyoY8eOFBkZmWUq/cGDB5O7uzs5OztT586d6d69ewbn3Lhxg9q2bUuOjo7iOgEBAZSammp0ORAEAAAA5LADBw6ICv7o0aO0e/duSklJoZYtW9Ljx4/154wcOZK2bdtG69evF+ffuXPHYM2dtLQ0EQA8e/aMjhw5QitWrKDly5fTxIkTjS6HotVqtWRlbsYmq10EAIur2H+N2kUAsLjHG3pb9PqXop6Y7VpveTm+8ntjYmLEnTxX9o0bN6b4+HgqXLgwrVmzhrp06SLOuXjxIlWqVIlCQ0Opbt26tGPHDmrXrp0IDjw9PcU5S5YsoXHjxonr5cuX76Wfi0wAAADISzHflpycTAkJCQYb7zMGV/rMzc1NPIaHh4vsQPPmzfXnVKxYkUqUKCGCAMaPVatW1QcAzNfXV3zuuXPnjPpcBAEAAABmwO38vDpuxo33vUx6ejqNGDGCGjRoQFWqVBH7oqKixJ28q6urwblc4fMx3TkZAwDdcd0xY2B0AAAASEsx4+iA8ePH06hRowz22dvbv/R93Dfg7NmzdOjQIcppCAIAAEBaihlHCHKFb0yln9GQIUMoJCSEDh48SMWKFdPv9/LyEh3+4uLiDLIBPDqAj+nOOX78uMH1dKMHdOe8DJoDAAAAchj3yecAYPPmzbRv3z4qXbq0wfFatWqRnZ0d7d27V7+PhxDykMB69eqJ1/x45swZio6O1p/DIw1cXFzI29vbqHIgEwAAANJSVPpcbgLgnv9bt24VcwXo2vC5H4GDg4N49Pf3F80L3FmQK/ahQ4eKip9HBjAeUsiVfc+ePSk4OFhcY8KECeLaxmYkEAQAAIC8FHU+dvHixeLx3XffNdi/bNky+vTTT8XzOXPmkEajEZME8SgD7vm/aNEi/bk2NjaiKWHQoEEiOHByciI/Pz8KCgoyuhyYJwAgj8I8ASADS88TcDXmqdmuVbawA+U1yAQAAIC0FMnXDkAQAAAA0lLkjgEwOgAAAEBWyAQAAIC0FJIbggAAAJCXQlJDcwAAAICkkAkAAABpKZKnAhAEAACAtBS5YwA0BwAAAMgKmQAAAJCWQnJDEAAAANJSJI8C0BwAAAAgKWQCAABAYgrJDEEAAABIS5E7BkBzAAAAgKyQCQAAAGkpJDcEAQAAIC1F8igAzQEAAACSQiYAAACkpUjeIIAgAAAA5KWQ1NAcAAAAIClkAgAAQFoKyQ1BAAAASEuRPApAcwAAAICkkAkAAABpKZI3CCAIAAAAeSkkNTQHAAAASAqZAAAAkJZCckMQAAAA0lIkjwLQHAAAACApZAIAAEBaiuQNAggCAABAWorcMQCaAwAAAGSFIAAAAEBSCAIAAEDq5gDFTJspDh48SO+//z4VLVqUFEWhLVu2GBzXarU0ceJEKlKkCDk4OFDz5s3p8uXLBufExsZS9+7dycXFhVxdXcnf358SExNNKgeCAAAAgBz2+PFjql69Oi1cuDDb48HBwTR//nxasmQJHTt2jJycnMjX15eSkpL053AAcO7cOdq9ezeFhISIwKJ///4mlUPRcrhhZW7GJqtdBACLq9h/jdpFALC4xxt6W/T68U/TzXatgg6vdl/NmYDNmzdTx44dxWuuljlDMHr0aBozZsy/5YyPJ09PT1q+fDl17dqVLly4QN7e3hQWFka1a9cW5+zcuZPatGlDt27dEu83BjIBAAAgLcWMzQHJycmUkJBgsPE+U12/fp2ioqJEE4BOwYIFqU6dOhQaGipe8yM3AegCAMbnazQakTkwFoIAAAAAM5gxY4aorDNuvM9UHAAwvvPPiF/rjvGjh4eHwXFbW1tyc3PTn2MMzBMAAADSUsx4rfHjx9OoUaMM9tnb21NuhiAAAADkpZjvUlzhm6PS9/LyEo/37t0TowN0+LWPj4/+nOjoaIP3paamihEDuvcbA80BAAAAuUjp0qVFRb537179Pu5fwG399erVE6/5MS4ujsLDw/Xn7Nu3j9LT00XfAWMhEwAAANJSVFo7gMfzX7lyxaAzYEREhGjTL1GiBI0YMYKmTZtG5cuXF0FBYGCg6PGvG0FQqVIlatWqFfXr108MI0xJSaEhQ4aIkQPGjgxgCAIAAEBaikprB5w4cYKaNm2qf63rS+Dn5yeGAY4dO1bMJcDj/vmOv2HDhmIIYP78+fXvWb16taj4mzVrJkYFdO7cWcwtYArMEwCQR2GeAJCBpecJePzMfFWgU768txoRMgEAACAtheSGIAAAAOSlkNQwOgAAAEBSyAQAAIC01BodkFsgCAAAAGkpcscAaA4AAACQlVUOEYScxatk8SIZPG92bp8nG+BV4fccrBGCAHhtPJ0lr5bF6127uLioXRwAi8DvOVgjNAcAAABICkEAAACApBAEAAAASApBALw27iQ1adIkdJYCq4bfc7BG6BgIAAAgKWQCAAAAJIUgAAAAQFIIAgAAACSFIAAAAEBSCALyuE8//ZQURaGZM2ca7N+yZYvY/zqWL19Orq6u2R7ja/NnAOTWvxcdO3bMsv+PP/4Qv7txcXGqlAsgt0EQYAXy589PX331FT18+JBkl5aWRunp6WoXA8Akz549U7sIICkEAVagefPm5OXlJRY3eZGNGzdS5cqVxTjnUqVK0axZs8zy+dndXUVERIh9f//9t0FWISQkhCpUqECOjo7UpUsXevLkCa1YsUKUp1ChQjRs2DBRketwYNOrVy9xjN/TunVrunz5sv647rq//voreXt7i+9248YNs3wvsG6TJ08mHx8fg31z584Vv4uZMwpffvkleXp6it+1oKAgSk1NpYCAAHJzc6NixYrRsmXLDK5z5swZeu+998jBwYHc3d2pf//+lJiYmOW606dPp6JFi4q/EwBqQBBgBWxsbMQ/UgsWLKBbt25le054eDh99NFH1LVrV/EPFP8DGBgYKCrRnMIV/vz58+nnn3+mnTt3iuDhgw8+oN9++01sK1eupG+//ZY2bNhg8I/liRMnRCUfGhpKPK1FmzZtKCUlxeC6nAn54Ycf6Ny5c+Th4ZFj3wms3759++jOnTt08OBBmj17tpgwqF27diIwPXbsGA0cOJAGDBig/7v3+PFj8vX1FcfDwsJo/fr1tGfPHhoyZIjBdffu3UuRkZG0e/duERwDqIInC4K8y8/PT9uhQwfxvG7duto+ffqI55s3b+ZJoPTnffLJJ9oWLVoYvDcgIEDr7e393GsvW7ZMXMPJySnLxvv5M9j+/fvF64cPH+rfe+rUKbHv+vXrBte6cuWK/pwBAwZoHR0dtY8ePdLv8/X1FfvZpUuXxHsOHz6sP37//n2tg4ODdt26dQbXjYiIeOWfIVjn3wsbG5ssv7f58+fX/65OmjRJW716dYP3zZkzR1uyZEmD6/DrtLQ0/b4KFSpoGzVqpH+dmpoqrr127Vrx+rvvvtMWKlRIm5iYqD9n+/btWo1Go42KitJf19PTU5ucnGzRnwPAy9iqE3qAJfDdMKcgx4wZk+XYhQsXqEOHDgb7GjRoINKfnH7nbEJ2ChQoQCdPnsyyv3z58iaXj9P5ZcuW1b/m9CqnXp2dnQ32RUdH68tsa2tLderU0R/n1CqnTvmYTr58+ahatWomlwesW9OmTWnx4sUG+/jOvUePHiZdh5vQNBqNwe9olSpV9K/57w7/Xmb8va1evTo5OTkZ/F3jvip858/vZ1WrVhW/uwBqQhBgRRo3bizSkOPHjxdpdHPgf/zKlSv30nNYxhmoM6brdezs7Axec5+B7PaZ2rGP211fdyQEWB+uhDP/7mZsLuPf28yzpufk723GIAFALegTYGV4qOC2bdtE+3lGlSpVosOHDxvs49dvvfXWc7MAxipcuLB4vHv3rkHHwNfFZeYOWHz3pvPgwQNxN8WdAAFe9/c2KirKIBAw1+/t6dOnRd+AjH/XOOhAB0DIbRAEWBlOMXbv3l10wMto9OjRoiPS1KlT6dKlS6JH/jfffJNt04Gp+G6rePHiorMh99zfvn27WUYecJMDN2H069ePDh06JP5h5VTum2++maVpA8BU7777LsXExFBwcDBdvXqVFi5cSDt27Hjt6/LfPx626+fnR2fPnqX9+/fT0KFDqWfPnvqmAIDcAkGAFeIhTJlTkzVr1qR169aJnvncnjlx4kRxnjmaDTg1unbtWrp48aJom+e+CdOmTSNz4KFXtWrVEr2x69WrJ+7aeCRB5nQswKvcsS9atEhU/tyGf/z4cbMExdz3ZdeuXRQbG0tvv/22GArbrFkzEXQD5DZYShgAAEBSyAQAAABICkEAAACApBAEAAAASApBAAAAgKQQBAAAAEgKQQAAAICkEAQAAABICkEAAACApBAEAFgAz8TYsWNHgylqR4wYkePl+OOPP8TiNnFxcTn2XXNrOQEgKwQBIA2urLii4Y2XcOU1D3jqZF6kyNI2bdok1m3IjRUiL+fMS0oDgHywlDBIpVWrVmI9guTkZLEGweDBg8U6BLz8cmbPnj0z23rvbm5uZrkOAIA5IRMAUrG3tycvLy8qWbIkDRo0iJo3b06//vqrQVp7+vTpVLRoUf2yrzdv3qSPPvqIXF1dRWXOKxj+/fff+mumpaXRqFGjxHF3d3caO3ZslnXqMzcHcBAybtw4sfoil4mzEkuXLhXXbdq0qTinUKFCIiOgW+SJF4WaMWMGlS5dmhwcHMSiNxs2bDD4HA5seHloPs7XyVjOV8Hfzd/fX/+Z/DOZN29etudOmTJFLM/r4uJCAwcOFEGUjjFlB4Cch0wASI0rpAcPHuhf83LLXInt3r1bvE5JSSFfX1+xguGff/5Jtra2YoVEzij89ddfIlPAyyYvX76cfvzxR7EyHb/evHkzvffee8/93F69elFoaKhY8pkrxOvXr9P9+/dFULBx40bq3LkzRUZGirJwGRlXoqtWraIlS5aIZZYPHjwollbmirdJkyYiWOnUqZPIbvTv359OnDghlpB+HVx5FytWjNavXy8CnCNHjohrFylSRARGGX9uvHwuN2Vw4NG7d29xPgdUxpQdAFTCqwgCyMDPz0/boUMH8Tw9PV27e/durb29vXbMmDH6456entrk5GT9e1auXKmtUKGCOF+Hjzs4OGh37dolXhcpUkQbHBysP56SkqItVqyY/rNYkyZNtMOHDxfPIyMjOU0gPj87+/fvF8cfPnyo35eUlKR1dHTUHjlyxOBcf39/bbdu3cTz8ePHa729vQ2Ojxs3Lsu1MitZsqR2zpw5WmMNHjxY27lzZ/1r/rm5ublpHz9+rN+3ePFirbOzszYtLc2osmf3nQHA8pAJAKmEhISQs7OzuMPnu9xPPvmEJk+erD9etWpVg34Ap0+fpitXrlCBAgUMrpOUlERXr16l+Ph4unv3LtWpU0d/jLMFtWvXztIkoBMREUE2NjYm3QFzGZ48eUItWrQw2M8p9xo1aojnFy5cMCgH4wzG61q4cKHIcty4cYOePn0qPtPHx8fgHM5mODo6GnxuYmKiyE7w48vKDgDqQBAAUuF28sWLF4uKntv9ucLOyMnJyeA1V2C1atWi1atXZ7kWp7JfhS69bwouB9u+fTu9+eabBse4T4Gl/PzzzzRmzBjRxMEVOwdDX3/9NR07dizXlx0AXg5BAEiFK3nuhGesmjVr0i+//EIeHh6ifT473D7OlWLjxo3Fax5yGB4eLt6bHc42cBbiwIEDomNiZrpMBHfK0/H29hYVJt+NPy+DwP0RdJ0cdY4ePUqv4/Dhw1S/fn36z3/+o9/HGZDMOGPCWQJdgMOfyxkX7uPAnSlfVnYAUAdGBwC8QPfu3emNN94QIwK4YyB34OPOb8OGDaNbt26Jc4YPH04zZ86kLVu20MWLF0WF+aIx/jwu38/Pj/r06SPeo7vmunXrxHEeucCjArjpIiYmRtxJ8x0435GPHDmSVqxYISrikydP0oIFC8Rrxj3yL1++TAEBAaJT4Zo1a0SHRWPcvn1bNFNk3B4+fCg68XEHw127dtGlS5coMDCQwsLCsryfU/s8iuD8+fNihMKkSZNoyJAhpNFojCo7AKgkB/odAOS6joGmHL979662V69e2jfeeEN0JCxTpoy2X79+2vj4eH1HQO705+LionV1ddWOGjVKnP+8joHs6dOn2pEjR4pOhfny5dOWK1dO++OPP+qPBwUFab28vLSKoohyMe6cOHfuXNFR0c7OTlu4cGGtr6+v9sCBA/r3bdu2TVyLy9moUSNxTWM6BvI5mTfuFMmd+j799FNtwYIFxXcbNGiQ9rPPPtNWr149y89t4sSJWnd3d9EhkH8+/F6dl5UdHQMB1KHw/9QKQAAAAEA9aA4AAACQFIIAAAAASSEIAAAAkBSCAAAAAEkhCAAAAJAUggAAAABJIQgAAACQFIIAAAAASSEIAAAAkBSCAAAAAEkhCAAAACA5/R9rBzrv/exrgwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "\n", "model.load_state_dict(torch.load(\"best_model.pth\")) \n", "model.eval()\n", "\n", @@ -276,7 +345,7 @@ "plt.xlabel(\"Predicted Label\")\n", "plt.ylabel(\"True Label\")\n", "plt.title(\"Confusion Matrix\")\n", - "plt.show()\n" + "plt.show()" ] } ],