NIls Rekus 2025-02-16 14:19:48 +01:00
commit 9c5ee8a2c2
1 changed files with 92 additions and 53 deletions

145
CNN.py
View File

@ -8,6 +8,7 @@ from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np import numpy as np
from datetime import datetime from datetime import datetime
import json import json
import itertools
import Datasets import Datasets
import dataset_helper import dataset_helper
@ -34,7 +35,7 @@ class EnhancedCNNRegressor(nn.Module):
nn.Conv2d(1, num_filters, (fs, embedding_dim)), nn.Conv2d(1, num_filters, (fs, embedding_dim)),
nn.BatchNorm2d(num_filters), # Batch-Normalisierung nn.BatchNorm2d(num_filters), # Batch-Normalisierung
nn.ReLU(), nn.ReLU(),
nn.MaxPool2d((params["max_len"] - fs + 1, 1)), nn.MaxPool2d((MAX_LEN - fs + 1, 1)),
nn.Dropout(dropout) # Dropout nach jeder Schicht nn.Dropout(dropout) # Dropout nach jeder Schicht
) )
for fs in filter_sizes for fs in filter_sizes
@ -56,20 +57,27 @@ class EnhancedCNNRegressor(nn.Module):
if __name__ == '__main__': if __name__ == '__main__':
# Hyperparameter und Konfigurationen # Hyperparameter und Konfigurationen
params = { params = {
# Config
"max_len": 280,
# Training # Training
"epochs": 5, "epochs": [5],
"patience": 7, "patience": [7],
"batch_size": 32, "learning_rate": [0.001],
"learning_rate": 0.001, "weight_decay": [5e-4] ,
"weight_decay": 5e-4 ,
# Model # Model
"filter_sizes": [2, 3, 4, 5], "filter_sizes": [[2, 3, 4, 5]],
"num_filters": 150, "num_filters": [150],
"dropout": 0.6 "dropout": [0.6]
} }
# Generate permutations of hyperparameters
keys, values = zip(*params.items())
grid_params = [dict(zip(keys, v)) for v in itertools.product(*values)]
best_params = {}
best_params_rmse = -1
# Example usage of grid_params
# for param_set in grid_params:
# print(param_set)
print('Number of grid_params:', len(grid_params))
# Configs # Configs
GLOVE_PATH = 'data/glove.6B.100d.txt' GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv' DATA_PATH = 'data/hack.csv'
@ -77,7 +85,11 @@ if __name__ == '__main__':
TEST_SIZE = 0.1 TEST_SIZE = 0.1
VAL_SIZE = 0.1 VAL_SIZE = 0.1
MAX_LEN = 280
BATCH_SIZE = 32
N_MODELS = 1 N_MODELS = 1
USE_GIRD_SEARCH = True
models = [] models = []
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
@ -92,17 +104,30 @@ if __name__ == '__main__':
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE) data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
# Dataset und DataLoader # Dataset und DataLoader
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"]) train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=MAX_LEN)
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"]) val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=MAX_LEN)
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"]) test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=MAX_LEN)
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False) val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=params["batch_size"], shuffle=False) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
subset_size = len(train_dataset) // N_MODELS subset_size = len(train_dataset) // N_MODELS
device = ml_helper.get_device(verbose=True, include_mps=False) device = ml_helper.get_device(verbose=True, include_mps=False)
# assert if N_MODLES > 1, than grid_params should be len 1
if N_MODELS > 1 and len(grid_params) > 1 or N_MODELS > 1 and USE_GIRD_SEARCH:
raise ValueError("If N_MODELS > 1, than grid_params should be len 1")
if not USE_GIRD_SEARCH:
print('Using best params')
# load best params
params_name = f'models/best_params_CNN.json'
with open(params_name, 'r') as f:
best_params = json.load(f)
grid_params = [best_params]
for i in range(N_MODELS): for i in range(N_MODELS):
model_name = f'CNN.pt' model_name = f'CNN.pt'
hist_name = f'CNN_history' hist_name = f'CNN_history'
@ -113,52 +138,66 @@ if __name__ == '__main__':
subset_indices = dataset_helper.ensemble_data_idx(train_dataset.labels, N_MODELS, i, methods='bootstrap') subset_indices = dataset_helper.ensemble_data_idx(train_dataset.labels, N_MODELS, i, methods='bootstrap')
train_dataset_sub = Subset(train_dataset, subset_indices) train_dataset_sub = Subset(train_dataset, subset_indices)
train_loader = DataLoader(train_dataset_sub, batch_size=params["batch_size"], shuffle=True) train_loader = DataLoader(train_dataset_sub, batch_size=BATCH_SIZE, shuffle=True)
model = EnhancedCNNRegressor( for para_idx, params in enumerate(grid_params):
vocab_size=vocab_size, if len(grid_params) > 1:
embedding_dim=EMBEDDING_DIM, model_name = f'CNN_{i}_param_{para_idx}.pt'
filter_sizes=params["filter_sizes"], hist_name = f'CNN_{i}_param_{para_idx}_history'
num_filters=params["num_filters"],
embedding_matrix=embedding_matrix,
dropout=params["dropout"]
)
model = model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
hist = ml_history.History() model = EnhancedCNNRegressor(
vocab_size=vocab_size,
embedding_dim=EMBEDDING_DIM,
filter_sizes=params["filter_sizes"],
num_filters=params["num_filters"],
embedding_matrix=embedding_matrix,
dropout=params["dropout"]
)
model = model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
early_stopping = EarlyStopping.EarlyStoppingCallback(patience=params["patience"], verbose=True, model_name=model_name)
# Training und Validierung hist = ml_history.History()
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"])
val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist) # Training und Validierung
for epoch in range(params["epochs"]):
ml_train.train_epoch(model, train_loader, criterion, optimizer, device, hist, epoch, params["epochs"])
early_stopping(val_rmse, model) val_rmse = ml_train.validate_epoch(model, val_loader, epoch, criterion, device, hist)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
# Load best model early_stopping(val_rmse, model)
model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False)) if early_stopping.early_stop:
models.append(model) print("Early stopping triggered.")
break
# Test Evaluation # Load best model
test_labels, test_preds = ml_train.test_loop(model, test_loader, device) model.load_state_dict(torch.load('models/checkpoints/' + model_name, weights_only=False))
models.append(model)
hist.add_test_results(test_labels, test_preds) # Test Evaluation
test_labels, test_preds = ml_train.test_loop(model, test_loader, device)
# save training history hist.add_test_results(test_labels, test_preds)
hist.save_history(hist_name, timestamp)
# RMSE, MAE und R²-Score für das Test-Set # save training history
test_mae = mean_absolute_error(test_labels, test_preds) hist.save_history(hist_name, timestamp)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds) # RMSE, MAE und R²-Score für das Test-Set
print(f"Model: {model_name} Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}") test_mae = mean_absolute_error(test_labels, test_preds)
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_r2 = r2_score(test_labels, test_preds)
print(f"Model: {model_name} Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
if test_rmse > best_params_rmse:
best_params_rmse = test_rmse
best_params = params
if len(grid_params) > 1:
best_params_name = f'models/best_params_CNN.json'
with open(best_params_name, 'w') as f:
json.dump(best_params, f)
if N_MODELS >1: if N_MODELS >1:
# Ensemble Prediction # Ensemble Prediction