test
parent
2cafee7d4f
commit
a221188979
File diff suppressed because it is too large
Load Diff
|
|
@ -7,9 +7,9 @@ import os
|
|||
|
||||
def get_device(verbose=False):
|
||||
"""
|
||||
Get the current device (CPU or GPU) for PyTorch.
|
||||
Get the current device (MPS, CPU or GPU) for PyTorch.
|
||||
"""
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
|
||||
if verbose:
|
||||
print('Using device:', device)
|
||||
return device
|
||||
|
|
|
|||
|
|
@ -0,0 +1,186 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as mpatches
|
||||
from tqdm import tqdm
|
||||
from dataset_generator import create_embedding_matrix
|
||||
from EarlyStopping import EarlyStopping
|
||||
|
||||
# 1. Gerät automatisch erkennen (MPS, CUDA oder CPU)
|
||||
device = torch.device('mps' if torch.backends.mps.is_available()
|
||||
else 'cuda' if torch.cuda.is_available()
|
||||
else 'cpu')
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# 2. Daten laden
|
||||
data = pd.read_csv('data/hack.csv')
|
||||
|
||||
# 3. Filtern humorvoller Texte
|
||||
humor_data = data[data['is_humor'] == 1].dropna(subset=['humor_rating']).copy()
|
||||
|
||||
# 4. Einbettungsmatrix erstellen
|
||||
embedding_matrix, word_index, vocab_size, d_model = create_embedding_matrix(
|
||||
gloVe_path='data/glove.6B.100d.txt', emb_len=100
|
||||
)
|
||||
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
|
||||
|
||||
# 5. Tokenisierung und Padding mit PyTorch
|
||||
def tokenize_and_pad(texts, word_index, max_len=50):
|
||||
sequences = []
|
||||
for text in texts:
|
||||
tokens = [word_index.get(word, 0) for word in text.split()]
|
||||
if len(tokens) < max_len:
|
||||
tokens += [0] * (max_len - len(tokens))
|
||||
else:
|
||||
tokens = tokens[:max_len]
|
||||
sequences.append(tokens)
|
||||
return torch.tensor(sequences, dtype=torch.long)
|
||||
|
||||
# Training und Testdaten splitten
|
||||
train_texts, test_texts, train_labels, test_labels = train_test_split(
|
||||
humor_data['text'], humor_data['humor_rating'], test_size=0.2, random_state=42
|
||||
)
|
||||
|
||||
# Tokenisierung und Padding
|
||||
max_len = 50
|
||||
train_input_ids = tokenize_and_pad(train_texts, word_index, max_len=max_len)
|
||||
test_input_ids = tokenize_and_pad(test_texts, word_index, max_len=max_len)
|
||||
|
||||
# Labels in Tensor konvertieren
|
||||
train_labels = torch.tensor(train_labels.values, dtype=torch.float)
|
||||
test_labels = torch.tensor(test_labels.values, dtype=torch.float)
|
||||
|
||||
# 6. Dataset-Klasse für PyTorch
|
||||
class HumorDataset(Dataset):
|
||||
def __init__(self, input_ids, labels):
|
||||
self.input_ids = input_ids
|
||||
self.labels = labels
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_ids)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.input_ids[idx], self.labels[idx]
|
||||
|
||||
# Dataset und DataLoader erstellen
|
||||
train_dataset = HumorDataset(train_input_ids, train_labels)
|
||||
test_dataset = HumorDataset(test_input_ids, test_labels)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
||||
|
||||
# 7. CNN-Regression-Modell definieren
|
||||
class CNNRegressor(nn.Module):
|
||||
def __init__(self, vocab_size, embed_dim, embedding_matrix):
|
||||
super(CNNRegressor, self).__init__()
|
||||
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
||||
self.embedding.weight.data.copy_(embedding_matrix.clone().detach())
|
||||
self.embedding.weight.requires_grad = False
|
||||
self.conv1 = nn.Conv1d(embed_dim, 128, kernel_size=3)
|
||||
self.conv2 = nn.Conv1d(128, 64, kernel_size=3)
|
||||
self.dropout = nn.Dropout(0.5)
|
||||
self.fc = nn.Linear(64, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embedding(x).permute(0, 2, 1)
|
||||
x = torch.relu(self.conv1(x))
|
||||
x = torch.relu(self.conv2(x))
|
||||
x = self.dropout(x)
|
||||
x = torch.max(x, dim=2).values
|
||||
x = self.fc(x)
|
||||
x = torch.sigmoid(x) * 5 # Wertebereich [0, 5]
|
||||
return x
|
||||
|
||||
# Initialisiere das Modell
|
||||
model = CNNRegressor(vocab_size, d_model, embedding_matrix).to(device)
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
|
||||
# Early Stopping
|
||||
#early_stopping = EarlyStopping(patience=5)
|
||||
|
||||
# 8. Training mit Validierung
|
||||
for epoch in range(20): # Maximal 20 Epochen
|
||||
model.train()
|
||||
train_loss = 0
|
||||
for inputs, labels in tqdm(train_loader, desc=f"Epoch {epoch+1}"):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
train_loss += loss.item()
|
||||
|
||||
train_loss /= len(train_loader)
|
||||
|
||||
# Validierungsverlust berechnen
|
||||
model.eval()
|
||||
val_loss = 0
|
||||
with torch.no_grad():
|
||||
for inputs, labels in test_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = model(inputs).squeeze()
|
||||
loss = criterion(outputs, labels)
|
||||
val_loss += loss.item()
|
||||
val_loss /= len(test_loader)
|
||||
|
||||
print(f"Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
|
||||
|
||||
# Early Stopping
|
||||
'''early_stopping(val_loss, model)
|
||||
if early_stopping.early_stop:
|
||||
print("Early stopping triggered")
|
||||
break'''
|
||||
|
||||
# 9. Modell evaluieren
|
||||
def evaluate_model(model, data_loader):
|
||||
model.eval()
|
||||
predictions = []
|
||||
actuals = []
|
||||
with torch.no_grad():
|
||||
for inputs, labels in data_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = model(inputs).squeeze()
|
||||
predictions.extend(outputs.cpu().numpy())
|
||||
actuals.extend(labels.cpu().numpy())
|
||||
return predictions, actuals
|
||||
|
||||
predictions, actuals = evaluate_model(model, test_loader)
|
||||
|
||||
# Metriken berechnen
|
||||
mse = mean_squared_error(actuals, predictions)
|
||||
mae = mean_absolute_error(actuals, predictions)
|
||||
r2 = r2_score(actuals, predictions)
|
||||
|
||||
print(f"MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
|
||||
|
||||
# 10. Visualisierung (Korrekte und falsche Vorhersagen farblich darstellen)
|
||||
tolerance = 0.5 # Toleranz für korrekte Vorhersagen
|
||||
predictions = np.array(predictions)
|
||||
actuals = np.array(actuals)
|
||||
|
||||
# Klassifikation: Grün (korrekt), Rot (falsch)
|
||||
correct = np.abs(predictions - actuals) <= tolerance
|
||||
colors = np.where(correct, 'green', 'red')
|
||||
|
||||
# Scatter-Plot
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.scatter(actuals, predictions, c=colors, alpha=0.6, edgecolor='k', s=50)
|
||||
plt.plot([0, 5], [0, 5], color='red', linestyle='--') # Perfekte Vorhersage-Linie
|
||||
|
||||
# Legende
|
||||
green_patch = mpatches.Patch(color='green', label='Correct Predictions')
|
||||
red_patch = mpatches.Patch(color='red', label='Incorrect Predictions')
|
||||
plt.legend(handles=[green_patch, red_patch])
|
||||
|
||||
# Achsen und Titel
|
||||
plt.xlabel("True Humor Ratings")
|
||||
plt.ylabel("Predicted Humor Ratings")
|
||||
plt.title("True vs Predicted Humor Ratings (Correct vs Incorrect)")
|
||||
plt.show()
|
||||
Loading…
Reference in New Issue